Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(3)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38579739

RESUMEN

Cancer is one of the leading causes of death in the 21st century, with metastasis of cancer attributing to 90% of cancer-related deaths. Therefore, to improve patient outcomes there is a need for better preclinical models to increase the success of translating oncological therapies into the clinic. Current traditional staticin vitromodels lack a perfusable network which is critical to overcome the diffusional mass transfer limit to provide a mechanism for the exchange of essential nutrients and waste removal, and increase their physiological relevance. Furthermore, these models typically lack cellular heterogeneity and key components of the immune system and tumour microenvironment. This review explores rapidly developing strategies utilising perfusable microphysiological systems (MPS) for investigating cancer cell metastasis. In this review we initially outline the mechanisms of cancer metastasis, highlighting key steps and identifying the current gaps in our understanding of the metastatic cascade, exploring MPS focused on investigating the individual steps of the metastatic cascade before detailing the latest MPS which can investigate multiple components of the cascade. This review then focuses on the factors which can affect the performance of an MPS designed for cancer applications with a final discussion summarising the challenges and future directions for the use of MPS for cancer models.


Asunto(s)
Dispositivos Laboratorio en un Chip , Neoplasias , Humanos , Sistemas Microfisiológicos
2.
Bioengineering (Basel) ; 10(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237592

RESUMEN

Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.

3.
Front Bioeng Biotechnol ; 11: 1321197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260750

RESUMEN

Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 µm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth. Firstly, we investigated the effect of gelatin within the scaffolds on the mechanical and chemical properties using compression testing and FTIR spectroscopy, respectively. Initial in vitro assessment of cell metabolic activity and vascular endothelial growth factor expression demonstrated that gelatin-containing PCL-M polyHIPEs are capable of supporting 3D breast cancer cell growth. We then utilised the chick chorioallantoic membrane (CAM) assay to assess the angiogenic potential of cell-seeded gelatin-containing PCL-M polyHIPEs, and vascular ingrowth within cell-seeded, surfactant and gelatin-containing scaffolds was investigated via histological staining. Overall, our study proposes a promising composite material to fabricate a substrate to support the 3D culture of cancer cells and vascular ingrowth.

4.
EMBO Mol Med ; 12(11): e11131, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33047515

RESUMEN

Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Sarcoma , Neoplasias de los Tejidos Blandos , Adolescente , Niño , Humanos , Medicina Molecular , Sarcoma/genética , Sarcoma/terapia
5.
Trends Endocrinol Metab ; 31(6): 398-409, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32396842

RESUMEN

In this opinion article we critically assess evidence for the existence of a family of antiangiogenic vascular endothelial growth factor (Vegfaxxxb) transcripts, arising from the use of a phylogenetically conserved alternative distal splice site within exon 8 of the VEGFA gene. We explain that prior evidence for Vegfaxxxb transcripts in tissues rests heavily upon flawed RT-PCR methodologies, with the extensive use of 5'-tailing in primer design being the main issue. Furthermore, our analysis of large RNA-seq data sets (human and ovine) fails to identify a single Vegfaxxxb transcript. Therefore, we challenge the very existence of Vegfaxxxb transcripts, which further questions the physiological relevance of studies based on the use of 'anti-VEGFAxxxb' antibodies. Our analysis has implications for the proposed therapeutic use of isoform-specific anti-VEGFA strategies for treating cancer and retinopathies.


Asunto(s)
Empalme Alternativo , Inhibidores de la Angiogénesis , Reacción en Cadena de la Polimerasa/normas , Análisis de Secuencia de ARN/normas , Factor A de Crecimiento Endotelial Vascular , Empalme Alternativo/genética , Humanos , Isoformas de Proteínas , Factor A de Crecimiento Endotelial Vascular/genética
6.
PLoS One ; 13(4): e0195116, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29617412

RESUMEN

Over expression of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) in vascular smooth muscle cells (VSMCs) induces apoptosis and reduces neointima formation occurring after saphenous vein interposition grafting or coronary stenting. In studies to address the mechanism of TIMP-3-driven apoptosis in human VSMCs we find that TIMP-3 increased activation of caspase-8 and apoptosis was inhibited by expression of Cytokine response modifier A (CrmA) and dominant negative FAS-Associated protein with Death Domain (FADD). TIMP-3 induced apoptosis did not cause mitochondrial depolarisation, increase activation of caspase-9 and was not inhibited by over-expression of B-cell Lymphoma 2 (Bcl2), indicating a mitochondrial independent/type-I death receptor pathway. TIMP-3 increased levels of the First Apoptosis Signal receptor (FAS) and depletion of FAS with shRNA showed TIMP-3-induced apoptosis was FAS dependent. TIMP-3 induced formation of the Death-Inducing Signalling Complex (DISC), as detected by immunoprecipitation and by immunofluorescence. Cellular-FADD-like IL-1 converting enzyme-Like Inhibitory Protein (c-FLIP) localised with FAS at the cell periphery in the absence of TIMP-3 and this localisation was lost on TIMP-3 expression with c-FLIP adopting a perinuclear localisation. Although TIMP-3 inhibited FAS shedding, this did not increase total surface levels of FAS but instead increased FAS levels within localised regions at the cell surface. A Disintegrin And Metalloproteinase 17 (ADAM17) is inhibited by TIMP-3 and depletion of ADAM17 with shRNA significantly decreased FAS shedding. However ADAM17 depletion did not induce apoptosis or replicate the effects of TIMP-3 by increasing localised clustering of cell surface FAS. ADAM17-depleted cells could activate caspase-3 when expressing levels of TIMP-3 that were otherwise sub-apoptotic, suggesting a partial role for ADAM17 mediated ectodomain shedding in TIMP-3 mediated apoptosis. We conclude that TIMP-3 induced apoptosis in VSMCs is highly dependent on FAS and is associated with changes in FAS and c-FLIP localisation, but is not solely dependent on shedding of the FAS ectodomain.


Asunto(s)
Apoptosis , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Receptor fas/metabolismo , Proteína ADAM17/antagonistas & inhibidores , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Caspasas/metabolismo , Células Cultivadas , Desintegrinas/antagonistas & inhibidores , Desintegrinas/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Confocal , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Estaurosporina/farmacología , Inhibidor Tisular de Metaloproteinasa-3/genética , Receptor fas/antagonistas & inhibidores , Receptor fas/genética
7.
Biochem Biophys Res Commun ; 493(2): 1057-1062, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28928095

RESUMEN

We have found that A Disintegrin And Metalloproteinase-9 (ADAM9) localises to cell-cell junctions with VE-Cadherin in confluent endothelial monolayers. Co-cultures of cells separately transfected with ADAM9-EGFP or ADAM9-HA showed expression is required in two adjacent cells for localisation to cell-cell junctions suggesting the ADAM9 ectodomain may self-associate. A direct interaction between ADAM9 ectodomains was confirmed using recombinant proteins and an ELISA based method. As the ADAM9 ectodomain can also exist as a soluble form physiologically, we examined if this could inhibit endothelial functions dependent on cell-cell junctions. The soluble ADAM9 ectodomain could not increase endothelial monolayer permeability or inhibit monocyte-endothelial adhesion, but could inhibit monocyte-endothelial transmigration. These novel findings point to ADAM9 playing an important role in endothelial cell biology that is distinct from the other ADAMs.


Asunto(s)
Proteínas ADAM/metabolismo , Células Endoteliales/citología , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Monocitos/citología , Migración Transendotelial y Transepitelial , Proteínas ADAM/análisis , Animales , Línea Celular , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/ultraestructura , Proteínas de la Membrana/análisis , Ratones , Monocitos/metabolismo , Dominios Proteicos
8.
Cancer Res ; 77(10): 2633-2646, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28377452

RESUMEN

Elevated plasma concentrations of soluble VEGFA isoforms are associated with poor prognosis in parallel with improved response to treatment with the anti-VEGFA antibody bevacizumab. To uncover the underlying mechanism to these observations, we administered anti-VEGFA therapy to mice bearing luminescent mouse fibrosarcomas expressing single VEGFA isoforms or their wild-type counterparts expressing all isoforms (fs120, fs164, fs188, or fsWT). Expression of the more soluble isoforms conferred an advantage for lung metastasis from subcutaneous tumors (fs120/164 vs. fs188/WT); fs120 cells also produced more lung colonies than fs188 cells when injected intravenously. Metastasis from subcutaneous fs120 tumors was more sensitive than fs188 to treatment with the anti-VEGFA antibody B20-4.1.1. Despite elevated plasma levels of VEGFA in fs120 tumor-bearing mice and a dependence on VEGF receptor 1 activity for metastasis to the lung, B20-4.1.1 did not affect survival in the lung on intravenous injection. B20-4.1.1 inhibited subcutaneous tumor growth and decreased vascular density in both fs120 and fs188 tumors. However, migration of fs120, but not fs188 cells, in vitro was inhibited by B20-4.1.1. The greater survival of fs120 cells in the lung was associated with VEGFR1-dependent accumulation of CD11b-positive myeloid cells and higher expression of the VEGFR1 ligand, PlGF2, by the fs120 cells in vitro and in the plasma and lungs of fs120 tumor-bearing mice. We conclude that soluble VEGFA isoform expression increases fibrosarcoma metastasis through multiple mechanisms that vary in their sensitivity to anti-VEGF/VEGFR inhibition, with VEGFA-targeted therapy suppressing metastasis through effects on the primary tumor rather than the metastatic site. Cancer Res; 77(10); 2633-46. ©2017 AACR.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Sarcoma/genética , Sarcoma/patología , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Ratones Transgénicos , Metástasis de la Neoplasia , Isoformas de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Sarcoma/tratamiento farmacológico , Sarcoma/mortalidad , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Cells Tissues Organs ; 202(5-6): 319-328, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27595401

RESUMEN

One of the greatest challenges currently faced in tissue engineering is the incorporation of vascular networks within tissue-engineered constructs. The aim of this study was to develop a technique for producing a perfusable, 3-dimensional, cell-friendly model of vascular structures that could be used to study the factors affecting angiogenesis and vascular biology in engineered systems in more detail. Initially, biodegradable synthetic pseudovascular networks were produced via the combination of robocasting and electrospinning techniques. The internal surfaces of the vascular channels were then recellularized with human dermal microvascular endothelial cells (HDMECs) with and without the presence of human dermal fibroblasts (HDFs) on the outer surface of the scaffold. After 7 days in culture, channels that had been reseeded with HDMECs alone demonstrated irregular cell coverage. However, when using a co-culture of HDMECs inside and HDFs outside the vascular channels, coverage was found to be continuous throughout the internal channel. Using this cell combination, collagen gels loaded with vascular endothelial growth factor were deposited onto the outer surface of the scaffold and cultured for a further 7 days. After this, endothelial cell outgrowth from within the channels into the collagen gel was observed, showing that the engineered vasculature maintains its capacity for angiogenesis. Furthermore, the HDMECs appeared to have formed perfusable tubules within the gel. These results show promising steps towards the development of an in vitro platform for studying angiogenesis and vascular biology in a tissue engineering context.


Asunto(s)
Materiales Biocompatibles/farmacología , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Ingeniería de Tejidos , Movimiento Celular , Colágeno Tipo I/farmacología , Dermis/irrigación sanguínea , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Femenino , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Geles , Humanos , Inmunohistoquímica , Masculino , Microvasos/citología , Perfusión , Factor A de Crecimiento Endotelial Vascular/farmacología
10.
Tissue Eng Part A ; 22(23-24): 1317-1326, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27676406

RESUMEN

One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized natural vascular scaffold from rat intestine to use as an in vitro platform for neovascularization studies for tissue-engineered constructs. Decellularization resulted in almost complete (97%) removal of nuclei and DNA, while collagen, glycosaminoglycan, and laminin content were preserved. Decellularization did, however, result in the loss of elastin and fibronectin. Some proangiogenic factors were retained, as fragments of decellularized intestine were able to stimulate angiogenesis in the chick chorioallantoic membrane assay. We demonstrated that decellularization left perfusable vascular channels intact, and these could be repopulated with human dermal microvascular endothelial cells. Optimization of reendothelialization of the vascular channels showed that this was improved by continuous perfusion of the vasculature and further improved by infusion of human dermal fibroblasts into the intestinal lumen, from where they invaded into the decellularized tissue. Finally we explored the ability of the perfused cells to form new vessels. In the absence of exogenous angiogenic stimuli, Dll4, a marker of endothelial capillary-tip cell activation during sprouting angiogenesis, was absent, indicating that the reformed vasculature was largely quiescent. However, after addition of vascular endothelial growth factor A, Dll4-positive endothelial cells could be detected, demonstrating that this engineered vascular construct maintained its capacity for neovascularization. In summary, we have demonstrated how a natural xenobiotic vasculature can be used as an in vitro model platform to study neovascularization and provide information on factors that are critical for efficient reendothelialization of decellularized tissue.


Asunto(s)
Células Endoteliales/metabolismo , Matriz Extracelular/química , Intestinos/química , Neovascularización Fisiológica , Animales , Embrión de Pollo , Humanos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA