Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Histochem Cell Biol ; 157(2): 239-250, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34757474

RESUMEN

Detection of synthetic thymidine analogues after their incorporation into replicating DNA during the S-phase of the cell cycle is a widely exploited methodology for evaluating proliferative activity, tracing dividing and post-mitotic cells, and determining cell-cycle parameters both in vitro and in vivo. To produce valid quantitative readouts for in vivo experiments with single intraperitoneal delivery of a particular nucleotide, it is necessary to determine the time interval during which a synthetic thymidine analogue can be incorporated into newly synthesized DNA, and the time by which the nucleotide is cleared from the blood serum. To date, using a variety of methods, only the bioavailability time of tritiated thymidine and 5-bromo-2'-deoxyuridine (BrdU) have been evaluated. Recent advances in double- and triple-S-phase labeling using 5-iodo-2'-deoxyuridine (IdU), 5-chloro-2'-deoxyuridine (CldU), and 5-ethynyl-2'-deoxyuridine (EdU) have raised the question of the bioavailability time of these modified nucleotides. Here, we examined their labeling kinetics in vivo and evaluated label clearance from blood serum after single intraperitoneal delivery to mice at doses equimolar to the saturation dose of BrdU (150 mg/kg). We found that under these conditions, all the examined thymidine analogues exhibit similar labeling kinetics and clearance rates from the blood serum. Our results indicate that all thymidine analogues delivered at the indicated doses have similar bioavailability times (approximately 1 h). Our findings are significant for the practical use of multiple S-phase labeling with any combinations of BrdU, IdU, CldU, and EdU and for obtaining valid labeling readouts.


Asunto(s)
Bromodesoxiuridina/metabolismo , Desoxiuridina/análogos & derivados , Gliburida/análogos & derivados , Timidina/metabolismo , Animales , Disponibilidad Biológica , Bromodesoxiuridina/administración & dosificación , Bromodesoxiuridina/sangre , Giro Dentado/metabolismo , Desoxiuridina/administración & dosificación , Desoxiuridina/sangre , Desoxiuridina/metabolismo , Gliburida/administración & dosificación , Gliburida/sangre , Gliburida/metabolismo , Inyecciones Intraperitoneales , Cinética , Ratones , Ratones Endogámicos C57BL , Timidina/administración & dosificación , Timidina/análogos & derivados
2.
Neuroscience ; 422: 75-87, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672642

RESUMEN

The production of new neurons and their incorporation into preexisting neuronal circuits occur throughout adulthood in the olfactory bulb and the hippocampal dentate gyrus of the mammalian brain. To determine whether the adult-born neurons are engaged in the acquisition and retrieval of olfactory associative memory, we developed and validated a single-trial olfactory fear conditioning protocol in mice which allows to detect activation of newborn neurons during a specific episode of memory acquisition. Using c-Fos mapping of neuronal activity, we then examined the activation of new and preexisting neurons during training and testing sessions. We found that a single trial of olfactory fear conditioning did not lead to a significant increase in the number of c-Fos-positive granule cells (GCs) of the olfactory bulb and the dentate gyrus. However, the activity of these two cell populations was dramatically increased during memory retrieval. Activation of neurons in the dentate gyrus during memory retrieval was observed mainly in the suprapyramidal blade. In the olfactory bulb, 1.6-2.7% of newborn GCs marked with thymidine analogues (2, 4, and 6 weeks old) expressed c-Fos during memory retrieval, while in the dentate gyrus no newborn neurons were found among the c-Fos-positive cells. These data are consistent with the hypothesis that adult-born GCs of the olfactory bulb are less involved in odor-cued associative fear memory than in odor-cued operant behavior memory.


Asunto(s)
Giro Dentado/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Bulbo Olfatorio/fisiología , Animales , Condicionamiento Psicológico/fisiología , Miedo , Masculino , Ratones , Neurogénesis/fisiología , Neuronas/fisiología , Percepción Olfatoria/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo
3.
Int J Mol Sci ; 20(13)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252566

RESUMEN

Hydrogen peroxide (H2O2) plays an important role in modulating cell signaling and homeostasis in live organisms. The HyPer family of genetically encoded indicators allows the visualization of H2O2 dynamics in live cells within a limited field of view. The visualization of H2O2 within a whole organism with a single cell resolution would benefit from a slowly reducible fluorescent indicator that integrates the H2O2 concentration over desired time scales. This would enable post hoc optical readouts in chemically fixed samples. Herein, we report the development and characterization of NeonOxIrr, a genetically encoded green fluorescent indicator, which rapidly increases fluorescence brightness upon reaction with H2O2, but has a low reduction rate. NeonOxIrr is composed of circularly permutated mNeonGreen fluorescent protein fused to the truncated OxyR transcription factor isolated from E. coli. When compared in vitro to a standard in the field, HyPer3 indicator, NeonOxIrr showed 5.9-fold higher brightness, 15-fold faster oxidation rate, 5.9-fold faster chromophore maturation, similar intensiometric contrast (2.8-fold), 2-fold lower photostability, and significantly higher pH stability both in reduced (pKa of 5.9 vs. ≥7.6) and oxidized states (pKa of 5.9 vs.≥ 7.9). When expressed in the cytosol of HEK293T cells, NeonOxIrr demonstrated a 2.3-fold dynamic range in response to H2O2 and a 44 min reduction half-time, which were 1.4-fold lower and 7.6-fold longer than those for HyPer3. We also demonstrated and characterized the NeonOxIrr response to H2O2 when the sensor was targeted to the matrix and intermembrane space of the mitochondria, nucleus, cell membranes, peroxisomes, Golgi complex, and endoplasmic reticulum of HEK293T cells. NeonOxIrr could reveal endogenous reactive oxygen species (ROS) production in HeLa cells induced with staurosporine but not with thapsigargin or epidermal growth factor. In contrast to HyPer3, NeonOxIrr could visualize optogenetically produced ROS in HEK293T cells. In neuronal cultures, NeonOxIrr preserved its high 3.2-fold dynamic range to H2O2 and slow 198 min reduction half-time. We also demonstrated in HeLa cells that NeonOxIrr preserves a 1.7-fold ex vivo dynamic range to H2O2 upon alkylation with N-ethylmaleimide followed by paraformaldehyde fixation. The same alkylation-fixation procedure in the presence of NP-40 detergent allowed ex vivo detection of H2O2 with 1.5-fold contrast in neuronal cultures and in the cortex of the mouse brain. The slowly reducible H2O2 indicator NeonOxIrr can be used for both the in vivo and ex vivo visualization of ROS. Expanding the family of fixable indicators may be a promising strategy to visualize biological processes at a single cell resolution within an entire organism.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/genética , Peróxido de Hidrógeno/metabolismo , Animales , Encéfalo/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrógeno/análisis , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Neuronas/metabolismo , Oxidación-Reducción
4.
Front Neurosci ; 12: 1013, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30686979

RESUMEN

While irradiation can effectively treat brain tumors, this therapy also causes cognitive impairments, some of which may stem from the disruption of hippocampal neurogenesis. To study how radiation affects neurogenesis, we combine phenotyping of subpopulations of hippocampal neural stem and progenitor cells with double- and triple S-phase labeling paradigms. Using this approach, we reveal new features of division, survival, and differentiation of neural stem and progenitor cells after exposure to gamma radiation. We show that dividing neural stem cells, while susceptible to damage induced by gamma rays, are less vulnerable than their rapidly amplifying progeny. We also show that dividing stem and progenitor cells that survive irradiation are suppressed in their ability to replicate 0.5-1 day after the radiation exposure. Suppression of division is also observed for cells that entered the cell cycle after irradiation or were not in the S phase at the time of exposure. Determining the longer term effects of irradiation, we found that 2 months after exposure, radiation-induced suppression of division is partially relieved for both stem and progenitor cells, without evidence for compensatory symmetric divisions as a means to restore the normal level of neurogenesis. By that time, most mature young neurons, born 2-4 weeks after the irradiation, still bear the consequences of radiation exposure, unlike younger neurons undergoing early stages of differentiation without overt signs of deficient maturation. Later, 6 months after an exposure to 5 Gy, cell proliferation and neurogenesis are further impaired, though neural stem cells are still available in the niche, and their pool is preserved. Our results indicate that various subpopulations of stem and progenitor cells in the adult hippocampus have different susceptibility to gamma radiation, and that neurogenesis, even after a temporary restoration, is impaired in the long term after exposure to gamma rays. Our study provides a framework for investigating critical issues of neural stem cell maintenance, aging, interaction with their microenvironment, and post-irradiation therapy.

5.
Oncotarget ; 8(61): 102934-102947, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262535

RESUMEN

Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR's target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively - xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.

6.
PLoS One ; 12(8): e0183757, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28837632

RESUMEN

Currently available genetically encoded calcium indicators (GECIs) utilize calmodulins (CaMs) or troponin C from metazoa such as mammals, birds, and teleosts, as calcium-binding domains. The amino acid sequences of the metazoan calcium-binding domains are highly conserved, which may limit the range of the GECI key parameters and cause undesired interactions with the intracellular environment in mammalian cells. Here we have used fungi, evolutionary distinct organisms, to derive CaM and its binding partner domains and design new GECI with improved properties. We applied iterative rounds of molecular evolution to develop FGCaMP, a novel green calcium indicator. It includes the circularly permuted version of the enhanced green fluorescent protein (EGFP) sandwiched between the fungal CaM and a fragment of CaM-dependent kinase. FGCaMP is an excitation-ratiometric indicator that has a positive and an inverted fluorescence response to calcium ions when excited at 488 and 405 nm, respectively. Compared with the GCaMP6s indicator in vitro, FGCaMP has a similar brightness at 488 nm excitation, 7-fold higher brightness at 405 nm excitation, and 1.3-fold faster calcium ion dissociation kinetics. Using site-directed mutagenesis, we generated variants of FGCaMP with improved binding affinity to calcium ions and increased the magnitude of FGCaMP fluorescence response to low calcium ion concentrations. Using FGCaMP, we have successfully visualized calcium transients in cultured mammalian cells. In contrast to the limited mobility of GCaMP6s and G-GECO1.2 indicators, FGCaMP exhibits practically 100% molecular mobility at physiological concentrations of calcium ion in mammalian cells, as determined by photobleaching experiments with fluorescence recovery. We have successfully monitored the calcium dynamics during spontaneous activity of neuronal cultures using FGCaMP and utilized whole-cell patch clamp recordings to further characterize its behavior in neurons. Finally, we used FGCaMP in vivo to perform structural and functional imaging of zebrafish using wide-field, confocal, and light-sheet microscopy.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Técnicas de Placa-Clamp , Espectrometría de Fluorescencia , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología
7.
Front Neuroanat ; 11: 117, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311849

RESUMEN

Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.

8.
Sci Rep ; 6: 34447, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677952

RESUMEN

Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo experiments. Herein, we describe a novel design for a one-fluorophore-based GECI with two Ca2+-binding sites. The engineered sensor, called NTnC, uses TnC as the Ca2+-binding moiety, inserted in the mNeonGreen fluorescent protein. Monomeric NTnC has higher brightness and pH-stability in vitro compared with the standard GECI GCaMP6s. In addition, NTnC shows an inverted fluorescence response to Ca2+. Using NTnC, we have visualized Ca2+ dynamics during spontaneous activity of neuronal cultures as confirmed by control NTnC and its mutant, in which the affinity to Ca2+ is eliminated. Using whole-cell patch clamp, we have demonstrated that NTnC dynamics in neurons are similar to those of GCaMP6s and allow robust detection of single action potentials. Finally, we have used NTnC to visualize Ca2+ neuronal activity in vivo in the V1 cortical area in awake and freely moving mice using two-photon microscopy or an nVista miniaturized microscope.

9.
EMBO J ; 34(12): 1648-60, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25916827

RESUMEN

Many reports have revealed the importance of the sympathetic nervous system (SNS) in the control of the bone marrow environment. However, the specific role of neuropeptide Y (NPY) in this process has not been systematically studied. Here we show that NPY-deficient mice have significantly reduced hematopoietic stem cell (HSC) numbers and impaired regeneration in bone marrow due to apoptotic destruction of SNS fibers and/or endothelial cells. Furthermore, pharmacological elevation of NPY prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while NPY injection into conditional knockout mice lacking the Y1 receptor in macrophages did not relieve bone marrow dysfunction. These results indicate that NPY promotes neuroprotection and restores bone marrow dysfunction from chemotherapy-induced SNS injury through the Y1 receptor in macrophages. They also reveal a new role of NPY as a regulator of the bone marrow microenvironment and highlight the potential therapeutic value of this neuropeptide.


Asunto(s)
Células de la Médula Ósea/metabolismo , Médula Ósea/fisiología , Microambiente Celular/fisiología , Células Madre Hematopoyéticas/fisiología , Fibras Nerviosas Mielínicas/metabolismo , Neuropéptido Y/metabolismo , Análisis de Varianza , Animales , Apoptosis/fisiología , Células Endoteliales/fisiología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Noqueados , Neuropéptido Y/deficiencia , Sistema Nervioso Simpático/citología
10.
PLoS One ; 9(4): e94975, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736732

RESUMEN

Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.


Asunto(s)
Drosophila/genética , Drosophila/metabolismo , Memoria , Morfogénesis/genética , Mutación , Proteínas Nucleares/genética , Receptores de Hidrocarburo de Aril/genética , Animales , Drosophila/embriología , Drosophila/efectos de la radiación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epistasis Genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Inactivación Metabólica/genética , Aprendizaje , Masculino , Nucleosomas , Fenotipo , Receptores de Hidrocarburo de Aril/metabolismo , Serotonina/farmacología , Rayos X
11.
Stem Cells Dev ; 22(16): 2298-314, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23517218

RESUMEN

Stem cells ensure tissue regeneration, while overgrowth of adipogenic cells may compromise organ recovery and impair function. In myopathies and muscle atrophy associated with aging, fat accumulation increases dysfunction, and after chronic injury, the process of fatty degeneration, in which muscle is replaced by white adipocytes, further compromises tissue function and environment. Some studies suggest that pericytes may contribute to muscle regeneration as well as fat formation. This work reports the presence of two pericyte subpopulations in the skeletal muscle and characterizes their specific roles. Skeletal muscle from Nestin-GFP/NG2-DsRed mice show two types of pericytes, Nestin-GFP-/NG2-DsRed+ (type-1) and Nestin-GFP+/NG2-DsRed+ (type-2), in close proximity to endothelial cells. We also found that both Nestin-GFP-/NG2-DsRed+ and Nestin-GFP+/NG2-DsRed+ cells colocalize with staining of two pericyte markers, PDGFRß and CD146, but only type-1 pericyte express the adipogenic progenitor marker PDGFRα. Type-2 pericytes participate in muscle regeneration, while type-1 contribute to fat accumulation. Transplantation studies indicate that type-1 pericytes do not form muscle in vivo, but contribute to fat deposition in the skeletal muscle, while type-2 pericytes contribute only to the new muscle formation after injury, but not to the fat accumulation. Our results suggest that type-1 and type-2 pericytes contribute to successful muscle regeneration which results from a balance of myogenic and nonmyogenic cells activation.


Asunto(s)
Adipogénesis/genética , Músculo Esquelético/citología , Pericitos/citología , Regeneración/genética , Animales , Antígenos/genética , Antígenos/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Linaje de la Célula/genética , Células Endoteliales/citología , Femenino , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Desnudos , Ratones Transgénicos , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Nestina/genética , Nestina/metabolismo , Pericitos/metabolismo , Pericitos/trasplante , Proteoglicanos/genética , Proteoglicanos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína Fluorescente Roja
12.
Exp Cell Res ; 319(1): 45-63, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22999866

RESUMEN

Reversing brain degeneration and trauma lesions will depend on cell therapy. Our previous work identified neural precursor cells derived from the skeletal muscle of Nestin-GFP transgenic mice, but their identity, origin, and potential survival in the brain are only vaguely understood. In this work, we show that Nestin-GFP+ progenitor cells share morphological and molecular markers with NG2-glia, including NG2, PDGFRα, O4, NGF receptor (p75), glutamate receptor-1(AMPA), and A2B5 expression. Although these cells exhibit NG2, they do not express other pericyte markers, such as α-SMA or connexin-43, and do not differentiate into the muscle lineage. Patch-clamp studies displayed outward potassium currents, probably carried through Kir6.1 channels. Given their potential therapeutic application, we compared their abundance in tissues and concluded that skeletal muscle is the richest source of predifferentiated neural precursor cells. We found that these cells migrate toward the neurogenic subventricular zone displaying their typical morphology and nestin-GFP expression two weeks after brain injection. For translational purposes, we sought to identify these neural progenitor cells in wild-type species by developing a DsRed expression vector under Nestin-Intron II control. This approach revealed them in nonhuman primates and aging rodents throughout the lifespan.


Asunto(s)
Antígenos/biosíntesis , Antígenos/genética , Músculo Esquelético/citología , Células-Madre Neurales/citología , Neuroglía/citología , Proteoglicanos/biosíntesis , Proteoglicanos/genética , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Animales , Antígenos/fisiología , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Marcadores Genéticos/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas de Filamentos Intermediarios/biosíntesis , Proteínas de Filamentos Intermediarios/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Nestina , Células-Madre Neurales/fisiología , Neuroglía/metabolismo , Neuroglía/fisiología , Proteoglicanos/fisiología , Trasplante de Células Madre/métodos
13.
Stem Cell Res ; 10(1): 67-84, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23128780

RESUMEN

Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1+ cells from skeletal muscle culture of Nestin-GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin-GFP/NG2-DsRed mouse and demonstrated that Nestin-GFP+/Tuj1+ cells derive from type-2 Nestin-GFP+/NG2-DsRed+/CD146+ pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1+ cells when cultured with muscle cells or become "classical" α-SMA+pericytes when cultured alone. In contrast, type-1 Nestin-GFP-/NG2-DsRed+/CD146+ pericytes generate α-SMA+pericytes but not Tuj1+ cells. Interestingly, type-2 pericyte derived Tuj1+ cells retain some pericytic markers (CD146+/PDGFRß+/NG2+). Given the potential application of Nestin-GFP+/NG2-DsRed+/Tuj1+ cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.


Asunto(s)
Músculo Esquelético/citología , Pericitos/citología , Animales , Antígenos/genética , Antígenos/metabolismo , Antígeno CD146/metabolismo , Diferenciación Celular , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Pericitos/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo
14.
Blood ; 120(9): 1843-55, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22645180

RESUMEN

Cytokine-induced expansion of hematopoietic stem and progenitor cells (HSPCs) is not fully understood. In the present study, we show that whereas steady-state hematopoiesis is normal in basic fibroblast growth factor (FGF-2)-knockout mice, parathyroid hormone stimulation and myeloablative treatments failed to induce normal HSPC proliferation and recovery. In vivo FGF-2 treatment expanded stromal cells, including perivascular Nestin(+) supportive stromal cells, which may facilitate HSPC expansion by increasing SCF and reducing CXCL12 via mir-31 up-regulation. FGF-2 predominantly expanded a heterogeneous population of undifferentiated HSPCs, preserving and increasing durable short- and long-term repopulation potential. Mechanistically, these effects were mediated by c-Kit receptor activation, STAT5 phosphorylation, and reduction of reactive oxygen species levels. Mice harboring defective c-Kit signaling exhibited abrogated HSPC expansion in response to FGF-2 treatment, which was accompanied by elevated reactive oxygen species levels. The results of the present study reveal a novel mechanism underlying FGF-2-mediated in vivo expansion of both HSPCs and their supportive stromal cells, which may be used to improve stem cell engraftment after clinical transplantation.


Asunto(s)
Proliferación Celular , Quimiocina CXCL12/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células del Estroma/metabolismo , Animales , Secuencia de Bases , Trasplante de Médula Ósea , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/genética , Regulación hacia Abajo/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Citometría de Flujo , Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Modelos Biológicos , Hormona Paratiroidea/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/genética , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT5/metabolismo , Células del Estroma/efectos de los fármacos
15.
PLoS One ; 6(2): e16816, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21304812

RESUMEN

BACKGROUND: Therapy for neural lesions or degenerative diseases relies mainly on finding transplantable active precursor cells. Identifying them in peripheral tissues accessible for biopsy, outside the central nervous system, would circumvent the serious immunological and ethical concerns impeding cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we isolated neural progenitor cells in cultured adult skeletal muscle from transgenic mice in which nestin regulatory elements control GFP expression. These cells also expressed the early neural marker Tuj1 and light and heavy neurofilament but not S100ß, indicating that they express typical neural but not Schwann cell markers. GFP+/Tuj1+ cells were also negative for the endothelial and pericyte markers CD31 and α-smooth muscle actin, respectively. We established their a) functional response to glutamate in patch-clamp recordings; b) interstitial mesenchymal origin; c) replicative capacity; and d) the environment necessary for their survival after fluorescence-activated cell sorting. CONCLUSIONS/SIGNIFICANCE: We propose that the decline in nestin-GFP expression in muscle progenitor cells and its persistence in neural precursor cells in muscle cultures provide an invaluable tool for isolating a population of predifferentiated neural cells with therapeutic potential.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Proteínas de Filamentos Intermediarios/genética , Músculo Esquelético/citología , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Transgenes/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Rastreo Celular/métodos , Células Cultivadas , Femenino , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/fisiología , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Nestina , Células-Madre Neurales/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/fisiología
16.
Nature ; 466(7308): 829-34, 2010 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-20703299

RESUMEN

The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin(+) MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent 'mesenspheres' that can self-renew and expand in serial transplantations. Nestin(+) MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or beta3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin(+) cells and favours their osteoblastic differentiation, in vivo nestin(+) cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin(+) MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin(+) cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Mesenquimatosas/citología , Nicho de Células Madre/citología , Animales , Diferenciación Celular/efectos de los fármacos , División Celular , Linaje de la Célula/efectos de los fármacos , Movimiento Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Condrocitos/citología , Condrocitos/efectos de los fármacos , Regulación de la Expresión Génica/genética , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Transgénicos , Células Madre Multipotentes/citología , Células Madre Multipotentes/efectos de los fármacos , Células Madre Multipotentes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nestina , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Hormona Paratiroidea/farmacología , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/metabolismo , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Sistema Nervioso Simpático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA