Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 216(2): 108088, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531503

RESUMEN

Melanin granules (melanosomes) in Asian and Caucasian black hairs were investigated by focused ion beam scanning electron microscopy (FIB-SEM). This technique facilitates a direct evaluation of the three-dimensional distribution and morphology of melanin granules without requiring their isolation from hair. Three-dimensional reconstructed images of melanin granule distribution in hair samples were obtained using serial SEM images observed by FIB-SEM. Melanin granules in black hair tended to be three-dimensionally dense in the outer periphery of the cortex. The morphometric parameters of melanin granules were calculated using the reconstructed three-dimensional images. The results confirmed that melanin granules in Caucasian black hair were much smaller those in Asian black hair. Moreover, it was indicated that the relative frequency distribution of the volume of melanin granules was significantly different between Asians and Caucasians.


Asunto(s)
Pueblo Asiatico , Cabello , Melaninas , Microscopía Electrónica de Rastreo , Población Blanca , Microscopía Electrónica de Rastreo/métodos , Humanos , Melaninas/metabolismo , Cabello/ultraestructura , Cabello/química , Melanosomas/ultraestructura , Melanosomas/metabolismo , Microscopía Electrónica de Volumen
2.
Mater Sci Eng C Mater Biol Appl ; 129: 112417, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34579926

RESUMEN

Artificial biological scaffolds made of extracellular matrix (ECM) components, such as type I collagen, provide ideal physicochemical cues to various cell culture platforms. However, it remains a challenge to fabricate micrometer-sized ECM materials with precisely controlled morphologies that could reconstitute the 3-dimensional (3D) microenvironments surrounding cells. In the present study, we proposed a unique process to fabricate fragmented collagen microfibers using a microfluidic laminar-flow system. The continuous flow of an acidic collagen solution was neutralized to generate solid fibers, which were subsequently fragmented by applying a gentle shear stress in a polyanion-containing phosphate buffer. The morphology of the fiber fragment was controllable in a wide range by changing the type and/or concentration of the polyanion and by tuning the applied shear stress. The biological benefits of the fragmented fibers were investigated through the formation of multicellular spheroids composed of primary rat hepatocytes and microfibers on non-cell-adhesive micro-vessels. The microfibers enhanced the survival and functions of the hepatocytes and reproduced proper cell polarity, because the fibers facilitated the formation of cell-cell and cell-matrix interactions while modulating the close packing of cells. These results clearly indicated that the microengineered fragmented collagen fibers have great potential to reconstitute extracellular microenvironments for hepatocytes in 3D culture, which will be of significant benefit for cell-based drug testing and bottom-up tissue engineering.


Asunto(s)
Colágeno , Microfluídica , Animales , Matriz Extracelular , Hepatocitos , Polielectrolitos , Ratas , Ingeniería de Tejidos
3.
Ann Bot ; 125(5): 833-840, 2020 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31773147

RESUMEN

BACKGROUND AND AIMS: Excess salinity inhibits the metabolism of various systems and induces structural changes, especially in chloroplasts. Although the chloroplast body seems to swell under salinity stress as observed by conventional transmission electron microscopy, previous studies are limited to 2-D data and lack quantitative comparisons because specimens need to be sliced into ultrathin sections. This study shows three-dimensionally the structural changes in a whole mesophyll cell responding to salinity stress by serial sectioning with a focused ion beam scanning electron microscope (FIB-SEM) and compares the differences in chloroplast structures based on reconstructed models possessing accurate numerical voxel values. METHODS: Leaf blades of rice plants treated with 100 mm NaCl or without (control) for 4 d were fixed chemically and embedded in resin. The specimen blocks were sectioned and observed using the FIB-SEM, and then the sliced image stacks were reconstructed into 3-D models by image processing software. KEY RESULTS: On the transverse sections of rice mesophyll cells, the chloroplasts in the control leaves appeared to be elongated meniscus lens shaped, while those in the salt-treated leaves appear to be expanded oval shaped. The 3-D models based on serial sectioning images showed that the chloroplasts in the control cells spread like sheets fitted to the shape of the cell wall and in close contact with the adjacent chloroplasts. In contrast, those in the salt-stressed cells curled up into a ball and fitted to cell protuberances without being in close contact with adjacent chloroplasts. Although the shapes of chloroplasts were clearly different between the two treatments, their volumes did not differ. CONCLUSIONS: The 3-D reconstructed models of whole rice mesophyll cells indicated that chloroplasts under salt stress conditions were not swollen but became spherical without increasing their volume. This is in contrast to findings of previous studies based on 2-D images.


Asunto(s)
Oryza , Cloroplastos , Células del Mesófilo , Hojas de la Planta , Estrés Salino
4.
Plant Cell Environ ; 41(3): 563-575, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29216410

RESUMEN

We investigated the invagination structure of a chloroplast that surrounds organelles such as mitochondria and peroxisomes within a thin layer of chloroplast stroma, which is called a chloroplast pocket. In this study, chloroplast pockets were observed in rice plants subjected to salinity stress but not under moderate growth condition. They included cytosol, transparent structure, lipid bodies, mitochondria, and peroxisomes. We constructed the three-dimensional architecture of chloroplast pockets by using serial images obtained by transmission electron microscopy and focused ion beam-scanning electron microscopy. Three types of chloroplast pockets were observed by transmission electron microscopy: Organelles were completely enclosed in a chloroplast pocket (enclosed type), a chloroplast pocket with a small gap in the middle part (gap type), and a chloroplast pocket with one side open (open type). Of the 70 pockets observed by serial imaging, 35 were enclosed type, and 21 and 14 were gap and open types, respectively. Mitochondria and peroxisomes were often in contact with the chloroplast pockets. Focused ion beam-scanning electron microscopy revealed chloroplasts with a sheet structure partially surrounding peroxisomes. This fact suggests that chloroplasts might construct large sheet structures that would be related to the formation of chloroplast pockets.


Asunto(s)
Cloroplastos/ultraestructura , Células del Mesófilo/ultraestructura , Oryza/citología , Estrés Salino , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oryza/fisiología , Células Vegetales/ultraestructura , Hojas de la Planta/citología , Hojas de la Planta/fisiología
5.
Ann Bot ; 120(1): 21-28, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28444369

RESUMEN

Background and Aims: Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Methods: Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 µm, y = 25 µm, z = 10-25 µm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. Key Results: The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Conclusions: Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts.


Asunto(s)
Células del Mesófilo/ultraestructura , Microscopía Electrónica de Rastreo , Oryza/citología , Forma de la Célula , Cloroplastos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional
6.
J Cell Sci ; 130(1): 132-142, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27358478

RESUMEN

Podocytes present a unique 3D architecture specialized for glomerular filtration. However, several 3D morphological aspects on podocyte development remain partially understood because they are difficult to reveal using conventional scanning electron microscopy (SEM). Here, we adopted serial block-face SEM imaging, a powerful tool for analyzing the 3D cellular ultrastructure, to precisely reveal the morphological process of podocyte development, such as the formation of foot processes. Development of foot processes gives rise to three morphological states: the primitive, immature and mature foot processes. Immature podocytes were columnar in shape and connected to each other by the junctional complex, which migrated toward the basal side of the cell. When the junctional complex was close to the basement membrane, immature podocytes started to interdigitate with primitive foot processes under the level of junctional complex. As primitive foot processes lengthened, the junctional complex moved between primitive foot processes to form immature foot processes. Finally, the junctional complex was gradually replaced by the slit diaphragm, resulting in the maturation of immature foot processes into mature foot processes. In conclusion, the developmental process of podocytes is now clearly visualized by block-face SEM imaging.


Asunto(s)
Forma de la Célula , Microscopía Electrónica de Rastreo/métodos , Podocitos/citología , Podocitos/ultraestructura , Animales , Glomérulos Renales/irrigación sanguínea , Glomérulos Renales/citología , Glomérulos Renales/ultraestructura , Masculino , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...