Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 133(12)2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32409566

RESUMEN

Functional recovery after peripheral nerve damage is dependent on the reprogramming of differentiated Schwann cells (dSCs) into repair Schwann cells (rSCs), which promotes axonal regeneration and tissue homeostasis. Transition into a repair phenotype requires expression of c-Jun and Sox2, which transcriptionally mediates inhibition of the dSC program of myelination and activates a non-cell-autonomous repair program, characterized by the secretion of neuronal survival and regenerative molecules, formation of a cellular scaffold to guide regenerating axons and activation of an innate immune response. Moreover, rSCs release exosomes that are internalized by peripheral neurons, promoting axonal regeneration. Here, we demonstrate that reprogramming of Schwann cells (SCs) is accompanied by a shift in the capacity of their secreted exosomes to promote neurite growth, which is dependent on the expression of c-Jun (also known as Jun) and Sox2 by rSCs. Furthermore, increased expression of miRNA-21 is responsible for the pro-regenerative capacity of rSC exosomes, which is associated with PTEN downregulation and PI3-kinase activation in neurons. We propose that modification of exosomal cargo constitutes another important feature of the repair program of SCs, contributing to axonal regeneration and functional recovery after nerve injury.


Asunto(s)
Exosomas , MicroARNs , Axones , Reprogramación Celular , Exosomas/genética , MicroARNs/genética , Regeneración Nerviosa/genética , Células de Schwann
2.
Curr Biol ; 28(22): 3547-3561.e9, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30393032

RESUMEN

Long non-coding RNAs (lncRNAs) can often function in the regulation of gene expression during development; however, their generality as essential regulators in developmental processes and organismal phenotypes remains unclear. Here, we performed a tailored investigation of lncRNA expression and function during Drosophila embryogenesis, interrogating multiple stages, tissue specificity, nuclear localization, and genetic backgrounds. Our results almost double the number of annotated lncRNAs expressed at these embryonic stages. lncRNA levels are generally positively correlated with those of their neighboring genes, with little evidence of transcriptional interference. Using fluorescent in situ hybridization, we report the spatiotemporal expression of 15 new lncRNAs, revealing very dynamic tissue-specific patterns. Despite this, deletion of selected lncRNA genes had no obvious developmental defects or effects on viability under standard and stressed conditions. However, two lncRNA deletions resulted in modest expression changes of a small number of genes, suggesting that they fine-tune expression of non-essential genes. Several lncRNAs have strain-specific expression, indicating that they are not fixed within the population. This intra-species variation across genetic backgrounds may thereby be a useful tool to distinguish rapidly evolving lncRNAs with as yet non-essential roles.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , ARN Largo no Codificante/genética , Animales , Desarrollo Embrionario/genética , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación Fluorescente in Situ/métodos , Especificidad de Órganos/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA