Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros











Intervalo de año de publicación
1.
Noncoding RNA Res ; 10: 1-15, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39296640

RESUMEN

Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.

2.
Heliyon ; 10(14): e34464, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114022

RESUMEN

Membrane transporters are proteins responsible for facilitating the movement of molecules within biological membranes. They play a vital role in maintaining cellular homeostasis by regulating the transport of nutrients, ions, and other molecules into and out of cells. Our aim is to identify biomarkers in colorectal cancer using membrane transporter proteins. We utilized COAD TCGA data for this purpose. Subsequently, we conducted differential gene analysis and feature selection using membrane transporter proteins. Furthermore, we identified two potential genes, including ANO7 and SLC38A4. To validate the expression profiles of ANO7 and SLC38A4, key genes in this context, RT-qPCR was employed on colorectal cancer samples and adjacent normal tissues. Additionally, utilizing GEPIA2, Kaplan-Meier survival analysis, and cBioPortal, we assessed the status of these genes in various cancers, examining their methylation and mutation patterns. In conclusion, we suggest that ANO7 and SLC38A4 serve as prognostic biomarkers in colorectal cancer.

3.
Mutat Res Rev Mutat Res ; 794: 108513, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216513

RESUMEN

Breast cancer continues to be a major global health challenge, driving the need for effective therapeutic strategies. Cisplatin, a powerful chemotherapeutic agent, is widely used in breast cancer treatment. However, its effectiveness is often limited by systemic toxicity and the development of drug resistance. This review examines the molecular factors that influence cisplatin response and resistance, offering crucial insights for the scientific community. It highlights the significance of understanding cisplatin resistance's genetic and epigenetic contributors, which could lead to more personalized treatment approaches. Additionally, the review explores innovative strategies to counteract cisplatin resistance, including combination therapies, nanoparticle-based drug delivery systems, and targeted therapies. These approaches are under intensive investigation and promise to enhance breast cancer treatment outcomes. This comprehensive discussion is a valuable resource to advance breast cancer therapeutics and address the challenge of cisplatin resistance.

4.
MedComm (2020) ; 5(7): e583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38919334

RESUMEN

Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.

5.
Biomed Pharmacother ; 177: 116954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906027

RESUMEN

Osteoporosis, characterized by compromised bone density and microarchitecture, represents a significant global health challenge, particularly in aging populations. This comprehensive review delves into the intricate signaling pathways implicated in the pathogenesis of osteoporosis, providing valuable insights into the pivotal role of signal transduction in maintaining bone homeostasis. The exploration encompasses cellular signaling pathways such as Wnt, Notch, JAK/STAT, NF-κB, and TGF-ß, all of which play crucial roles in bone remodeling. The dysregulation of these pathways is a contributing factor to osteoporosis, necessitating a profound understanding of their complexities to unveil the molecular mechanisms underlying bone loss. The review highlights the pathological significance of disrupted signaling in osteoporosis, emphasizing how these deviations impact the functionality of osteoblasts and osteoclasts, ultimately resulting in heightened bone resorption and compromised bone formation. A nuanced analysis of the intricate crosstalk between these pathways is provided to underscore their relevance in the pathophysiology of osteoporosis. Furthermore, the study addresses some of the most crucial long non-coding RNAs (lncRNAs) associated with osteoporosis, adding an additional layer of academic depth to the exploration of immune system involvement in various types of osteoporosis. Finally, we propose that SKP1 can serve as a potential biomarker in osteoporosis.


Asunto(s)
Osteoporosis , Transducción de Señal , Osteoporosis/inmunología , Osteoporosis/genética , Osteoporosis/metabolismo , Humanos , Animales , Remodelación Ósea , Osteoclastos/metabolismo , Osteoclastos/inmunología , Osteoblastos/metabolismo , Osteoblastos/inmunología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Int J Biol Macromol ; 270(Pt 1): 132239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735606

RESUMEN

Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-ß) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-ß pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.


Asunto(s)
Neoplasias Colorrectales , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Subunidades beta de Inhibinas , Mapas de Interacción de Proteínas , Transducción de Señal , Factor de Crecimiento Transformador beta , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Biología Computacional/métodos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Mapas de Interacción de Proteínas/genética , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Mutación , Biomarcadores de Tumor/genética
7.
Noncoding RNA Res ; 9(2): 560-582, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515791

RESUMEN

Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.

8.
Noncoding RNA Res ; 9(2): 508-522, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511060

RESUMEN

The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.

9.
Pathol Res Pract ; 255: 155214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430814

RESUMEN

Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.


Asunto(s)
Exosomas , Neoplasias , Humanos , Exosomas/metabolismo , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Comunicación Celular
10.
Int J Biochem Cell Biol ; 170: 106566, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513802

RESUMEN

Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , MicroARNs/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Epigénesis Genética , Pronóstico , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica
11.
J Tradit Complement Med ; 14(2): 121-134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481552

RESUMEN

Hematological cancers include leukemia, myeloma and lymphoma and up to 178.000 new cases are diagnosed with these tumors each year. Different kinds of treatment including radiotherapy, chemotherapy, immunotherapy and stem cell transplantation have been employed in the therapy of hematological cancers. However, they are still causing death among patients. On the other hand, curcumin as an anti-cancer agent for the suppression of human cancers has been introduced. The treatment of hematological cancers using curcumin has been followed. Curcumin diminishes viability and survival rate of leukemia, myeloma and lymphoma cells. Curcumin stimulates apoptosis and G2/M arrest to impair progression of tumor. Curcumin decreases levels of matrix metalloproteinases in suppressing cancer metastasis. A number of downstream targets including VEGF, Akt and STAT3 undergo suppression by curcumin in suppressing progression of hematological cancers. Curcumin stimulates DNA damage and reduces resistance of cancer cells to irradiation. Furthermore, curcumin causes drug sensitivity of hematological tumors, especially myeloma. For targeted delivery of curcumin and improving its pharmacokinetic and anti-cancer features, nanostructures containing curcumin and other anti-cancer agents have been developed.

12.
Cell J ; 26(1): 62-69, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38351730

RESUMEN

OBJECTIVE: Reduction of cerebral ischemia-reperfusion injury (IRI)/re-oxygenation injury, is defined as the paradoxical exacerbation of the cellular dysfunction and death, following restoration of the blood flow to previously ischemic tissues. The re-establishment of blood flow is essential to salvage the ischemic tissues. As a result, the treatment of IRI with novel therapies, which have fewer side effects, are of great importance. Therefore, this study aimed to investigate the effects of curcumin nanoparticle (CN) pre-treatment on the cerebral I/R rat model. MATERIALS AND METHODS: In this experimental study, CN was administered to rats orally five days before the bilateral common carotid artery occlusion (BCCAO) and continued for three days. The intensity of oxidative stress, the activities of antioxidant enzymes, glutathione (GSH) content, the activity of mitochondrial enzymes, including succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), curcumin bioavailability, pERK/ERK expression ratio and TFEB protein were studied. Data analysis was performed using Graphpad Prism V.8 software, one-way analysis of variance (ANOVA) with the statistical package for the social sciences (SPSS V.26 software). RESULTS: Cerebral IRI-damage significantly increased the oxidative stress (P=0.0008) and decreased the activity of the antioxidant enzymes including catalase (CAT) (P<0.001), super oxide dismutase (SOD) (P<0.001), reduced GSH (P<0.001), mitochondrial enzymes, pERK/ERK expression ratio (P=0.002) and TEFB protein (P=0.005) in rats' brains. In addition, the pre-treatment of the rats with CN resulted in a decrease in the reactive oxygen species (ROS), and an increase in the activities of antioxidants and mitochondrial enzymes. This in turn up-regulated the pERK/ERK expression ratio and TEFB expression. CONCLUSION: CN has neuroprotective effects on the cerebral IRI condition due to its antioxidant properties and is able to overexpress the pERK and TFEB proteins; thus, it can be considered as a suitable treatment option during and after the incidence of stroke.

13.
Transl Oncol ; 40: 101846, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042134

RESUMEN

The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.

14.
Pathol Res Pract ; 253: 154988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38118215

RESUMEN

Gastrointestinal (GI) cancers continue to be a major cause of mortality and morbidity globally. Understanding the molecular pathways associated with cancer progression and severity is essential for creating effective cancer treatments. In cancer research, there is a notable emphasis on Enhancer of zeste homolog 2 (EZH2), a key player in gene expression influenced by its irregular expression and capacity to attach to promoters and alter methylation status. This review explores the impact of EZH2 signaling on various GI cancers, such as colorectal, gastric, pancreatic, hepatocellular, esophageal, and cholangiocarcinoma. The primary function of EZH2 signaling is to facilitate the accelerated progression of cancer cells. Additionally, EZH2 has the capacity to modulate the reaction of GI cancers to chemotherapy and radiotherapy. Numerous pathways, including long non-coding RNAs and microRNAs, serve as upstream regulators of EZH2 in these types of cancer. EZH2's enzymatic activity enables it to attach to target gene promoters, resulting in methylation that modifies their expression. EZH2 could be considered as an independent prognostic factor, with increased expression correlating with a worse disease prognosis. Additionally, a range of gene therapies including small interfering RNA, and anti-tumor agents are being explored to target EZH2 for cancer treatment. This comprehensive review underscores the current insights into EZH2 signaling in gastrointestinal cancers and examines the prospect of therapies targeting EZH2 to enhance patient outcomes.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias Gastrointestinales , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Complejo Represivo Polycomb 2/genética , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/terapia , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
15.
Pathol Res Pract ; 253: 155014, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128189

RESUMEN

This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Seudogenes/genética , Neoplasias/diagnóstico , Neoplasias/genética , Pronóstico , Biomarcadores de Tumor/genética
16.
Pathol Res Pract ; 253: 155036, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134836

RESUMEN

Osteoporosis, a prevalent bone disorder influenced by genetic and environmental elements, significantly increases the likelihood of fractures and bone weakness, greatly affecting the lives of those afflicted. Yet, the exact epigenetic processes behind the onset of osteoporosis are still unclear. Growing research indicates that epigenetic changes could act as vital mediators that connect genetic tendencies and environmental influences, thereby increasing the risk of osteoporosis and bone fractures. Within these epigenetic factors, certain types of RNA, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been recognized as key regulatory elements. These RNA types wield significant influence on gene expression through epigenetic regulation, directing various biological functions essential to bone metabolism. This extensive review compiles current research uncovering the complex ways in which miRNAs, lncRNAs, and circRNAs are involved in the development of osteoporosis, especially in osteoblasts and osteoclasts. Gaining a more profound understanding of the roles these three RNA classes play in osteoporosis could reveal new diagnostic methods and treatment approaches for this incapacitating condition. In conclusion, this review delves into the complex domain of epigenetic regulation via non-coding RNA in osteoporosis. It sheds light on the complex interactions and mechanisms involving miRNAs, lncRNAs, and circRNAs within osteoblasts and osteoclasts, offering an in-depth understanding of the less explored aspects of osteoporosis pathogenesis. These insights not only reveal the complexity of the disease but also offer significant potential for developing new diagnostic methods and targeted treatments. Therefore, this review marks a crucial step in deciphering the elusive complexities of osteoporosis, leading towards improved patient care and enhanced quality of life.


Asunto(s)
MicroARNs , Osteoporosis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Circular/genética , Epigénesis Genética/genética , Calidad de Vida , MicroARNs/genética , Osteoporosis/genética
17.
J Trace Elem Med Biol ; 81: 127320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913559

RESUMEN

BACKGROUND: Infertility is one of the major factors affecting most people around the world. Short-term exposure to high temperatures can cause hyperthermia, which is one of the causes of male infertility. The aim of this study was to investigate the protective effect of curcumin, vitamins D and E along with Iron (III) oxide nanoparticles (Fe2O3-NPs) and manganese oxide nanoparticles (MnO2-NPs) on semen parameters and its effect on miRNA21 and circRNA0001518 expression. MATERIAL AND METHODS: In this study, the lower part of the rat was exposed to 43 °C for 5 weeks every other day for 5 weeks. Then the animals were killed. Tissue samples were collected for sperm parameters analysis, and tissue samples were taken for evaluation of apoptosis levels in germ cells, and RNA extraction in order to examine the expression of Bax, Bcl-2, miRNA, and CircRNA genes. RESULTS: The results of this study showed that administration of curcumin, vitamin D, and vitamin E with Fe2O3-NPs and MnO2-NPs can improve the parameters of semen, Bax gene expression, Bcl-2 as well as miRNA and CircRNA in rats with testicular hyperthermia. In addition, curcumin by reducing the toxicity of Fe2O3 nanoparticles was able to reduce its negative effects and also reduce apoptosis in germ cells. This decrease in apoptosis was attributed to decreased Bcl-2 gene expression and increased expression of Bax, miRNA-21, and circRNA0001518. CONCLUSION: All the results of this study confirmed that Fe2O3-NPs and Mno2-NPs containing antioxidants or vitamins are useful in improving fertility in rats due to scrotal hyperthermia. Although Fe2O3-NPs and Mno2-NPs containing both antioxidants and vitamins had a greater effect on improving fertility and reducing the toxic effects of nanoparticles.


Asunto(s)
Curcumina , Hipertermia Inducida , Nanopartículas del Metal , MicroARNs , Nanopartículas , Humanos , Ratas , Masculino , Animales , Vitamina D , Compuestos de Manganeso , Óxidos/toxicidad , Curcumina/farmacología , ARN Circular , Hierro , MicroARNs/genética , Proteína X Asociada a bcl-2 , Nanopartículas del Metal/toxicidad , Semen , Antioxidantes , Vitaminas
18.
Noncoding RNA Res ; 9(1): 84-104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38075202

RESUMEN

The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.

19.
Biomed Pharmacother ; 169: 115927, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38006616

RESUMEN

Gastric cancer poses a significant health challenge, and exploring innovative therapeutic strategies is imperative. RNA interference (RNAi) has employed as an important therapeutic strategy for diseases by selectively targeting key pathways involved in diseases pathogenesis. Small interfering RNA (siRNA), a potent RNAi tool, possesses the capability to silence genes and downregulate their expression. This review provides a comprehensive examination of the potential applications of small interfering RNA (siRNA) and short hairpin RNA (shRNA), supplemented by an in-depth analysis of nanoscale delivery systems, in the context of gastric cancer treatment. The potential of siRNA to markedly diminish the proliferation and invasion of gastric cancer cells through the modulation of critical molecular pathways, including PI3K, Akt, and EMT, is highlighted. Besides, siRNA demonstrates its efficacy in inducing chemosensitivity in gastric tumor cells, thus impeding tumor progression. However, the translational potential of unmodified siRNA faces challenges, particularly in vivo and during clinical trials. To address this, we underscore the pivotal role of nanostructures in facilitating the delivery of siRNA to gastric cancer cells, effectively suppressing their progression and enhancing gene silencing efficiency. These siRNA-loaded nanoparticles exhibit robust internalization into gastric cancer cells, showcasing their potential to significantly reduce tumor progression. The translation of these findings into clinical trials holds promise for advancing the treatment of gastric cancer patients.


Asunto(s)
Nanopartículas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Neoplasias Gástricas/tratamiento farmacológico , Tratamiento con ARN de Interferencia , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Nanopartículas/química , Resistencia a Medicamentos , Sistemas de Liberación de Medicamentos
20.
J Cell Commun Signal ; 17(4): 1181-1202, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38019354

RESUMEN

The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA