Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Article En | MEDLINE | ID: mdl-38346259

Brazil plays an important role in ensuring its position on the international market by assuring high food safety standards for its products, and all products should meet the requirements for residues from veterinary drugs and contaminants in animal products. Statutory monitoring provides insights into the compliance of the Brazilian industry regarding these legal requirements. The objective of this study was to provide insight into the safety of Brazilian animal products by reporting the occurrence of residues from veterinary drugs and contaminants according to an analysis of an 11-year report published by the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA). Between 2010 and 2021, 166,647 samples from animal-derived products were analyzed in Brazil, and 624 of those samples were non-compliant (0.37%) exceeding maximum residue limits (>MRLs) or showed the presence of prohibited substances. The most common types of substances found in the non-compliant samples were heavy metals, parasiticides, and antimicrobials, accounting for 82% of all documents from the MAPA. Among Brazilian products, the challenge related to occurrence of substances varied across the food supply chain, with highest incidence rates observed in the fish chain, followed by eggs, milk, equids, sheep/goat, honey, bovine, swine, and broilers chains in decreasing order. Considering the type of substance, heavy metals were found to be more prevalent in fish products, mainly arsenic in wild fish. The prevalence of contaminants and heavy metals decreased, while that of veterinary drugs increased in Brazilian products from 2010 to 2021. From these results, it can be concluded that the number of accidental incidents including those associated with environmental contaminants decreased over the last decade, opposed to those involving human adversaries and deliberate illegal actions, such as the abuse of veterinary drugs, increased. Future monitoring plans need to take this paradigm shift into account.


Drug Residues , Metals, Heavy , Veterinary Drugs , Humans , Animals , Cattle , Swine , Sheep , Food Contamination/analysis , Brazil , Chickens , Veterinary Drugs/analysis , Metals, Heavy/analysis , Drug Residues/analysis
2.
Food Res Int ; 176: 113792, 2024 Jan.
Article En | MEDLINE | ID: mdl-38163706

Spices are usually ground for applications and the resulting particle size of the powders is an important product attribute in view of the release of flavour. However, inhomogeneity of the original material may lead to variations in the physicochemical characteristics of the particles. This variation and its linkage to particle size may be examined by particular imaging techniques. This study aimed to explore the potential of Fluorescence Lifetime Imaging Microscopy (FLIM) to characterize spice powders according to particle size variations and correlation with their pigment contents to reveal the chemical information contained within the FLIM data. Ginger powder was used as a representative powder model. The FLIM profiles of the individual samples and populations revealed that FLIM coupled with the phasor approach has the capacity to characterize spice powder according to particle size. Meanwhile, Principal Component Analysis of pre-processed FLIM data revealed clustering of particle size groups. Further correlation analysis between the pigment compound contents and FLIM data of the ginger powders indicated that FLIM reflected chemical information of ginger powder and was able to visualize endogenous fluorophores. The current study revealed the potential of FLIM to characterize ginger powder particles. This approach may be extrapolated to other spice powder products. The new knowledge is a step further in paving the way for the application of innovative techniques, already prevalent in other domains, to food quality and authentication.


Zingiber officinale , Spices , Powders , Particle Size , Microscopy, Fluorescence/methods
3.
Food Res Int ; 170: 113023, 2023 Aug.
Article En | MEDLINE | ID: mdl-37316086

High-resolution (HR) visual imaging and spectral imaging are common computer vision-based techniques used for food quality analysis and/or authentication based on the interaction of light and material surface and/or composition. The particle size of ground spices is an important morphological feature that affects the physico-chemical properties of food products containing such particles. This study aimed to interpret the impact of particle size of ground spice on its HR visual profile and spectral imaging profile using ginger powder as a representative spice powder model. The results revealed an increase in the light reflection with the decrease of particle size of ginger powder, which was manifested by the lighter colour (higher percentage of the colour code with lighter yellow colour) of the HR visual image and stronger reflection with spectral imaging. The study also revealed that, in spectral imaging, the influence of the particle size of ginger powder increased with rising wavelengths. Finally, the results indicated a relationship between spectral wavelengths, ginger particle size, and other natural variables of the products which might be generated from cultivation to processing. Ultimately, the impact of natural variables arising during the food production process on the physico-chemical properties of the product should be fully considered or even additionally evaluated prior to the application of specific food quality and/or authentication analytical techniques.


Zingiber officinale , Particle Size , Powders , Spices
4.
NPJ Sci Food ; 6(1): 51, 2022 Nov 04.
Article En | MEDLINE | ID: mdl-36329117

As an important spice, ginger has been widely distributed in the Chinese and the European Union (EU) markets, the two largest trading areas, in various forms. The ginger supply chain between China and the EU is long and complex, providing opportunities for fraudsters to deceive consumers. However, limited attention has been given to food fraud in ginger, and there is a lack of research on this topic. In this review, ginger was used as an example for interpreting the fraud issues within low-priced and high-trade volume spice products. This review aims to summarize the open access information from food and food fraud databases, literature, and stakeholders about ginger fraud, and to map, deconstruct and analyse the food fraud vulnerability in the supply chain. In addition, potential testing strategies to detect ginger fraud were also discussed. The investigation of food fraud databases, a semi-structured literature review and online interviews with stakeholders revealed that adulteration is the major fraud type in ginger products. And the most vulnerable ginger products are ground ginger and finely processed ginger. The ginger supply chain from China to the EU comprises nine stages and is medium vulnerable to food fraud, both in regard to opportunities and motivational drivers. To ensure the integrity of the ginger supply chain, there is a need to apply fraud vulnerability tools in the companies of the industry. In addition, screening and confirmatory techniques based on the characteristics of ginger should be utilised for monitoring fraud issues in the supply chain.

5.
Foods ; 12(1)2022 Dec 22.
Article En | MEDLINE | ID: mdl-36613277

One of the pillars on which food traceability systems are based is the unique identification and recording of products and batches along the supply chain. Patterns of these identification codes in time and place may provide useful information on emerging food frauds. The scanning of codes on food packaging by users results in interesting spatial-temporal datasets. The analysis of these data using artificial intelligence could advance current food fraud detection approaches. Spatial-temporal patterns of the scanned codes could reveal emerging anomalies in supply chains as a result of food fraud in the chain. These patterns have not been studied yet, but in other areas, such as biology, medicine, credit card fraud, etc., parallel approaches have been developed, and are discussed in this paper. This paper projects these approaches for transfer and implementation in food supply chains in view of future applications for early warning of emerging food frauds.

6.
Foods ; 10(5)2021 May 08.
Article En | MEDLINE | ID: mdl-34066664

The stable isotopic ratios and elemental compositions of 120 banana samples, Musa spp. (AAA Group, Cavendish Subgroup) cultivar Williams, collected from six countries (Colombia, Costa Rica, Dominica Republic, Ecuador, Panama, Peru), were determined by isotope ratio mass spectrometry and inductively coupled plasma mass spectrometry. Growing conditions like altitude, temperature, rainfall and production system (organic or conventional cultivation) were obtained from the sampling farms. Principal component analysis (PCA) revealed separation of the farms based on geographical origin and production system. The results showed a significant difference in the stable isotopic ratios (δ13C, δ15N, δ18O) and elemental compositions (Al, Ba, Cu, Fe, Mn, Mo, Ni, Rb) of the pulp and peel samples. Furthermore, δ15N was found to be a good marker for organically produced bananas. A correlation analysis was conducted to show the linkage of growing conditions and compositional attributes. The δ13C of pulp and peel were mainly negatively correlated with the rainfall, while δ18O was moderately positively (R values ~0.5) correlated with altitude and temperature. A moderate correlation was also found between temperature and elements such as Ba, Fe, Mn, Ni and Sr in the pulp and peel samples. The PCA results and correlation analysis suggested that the differences of banana compositions were combined effects of geographical factors and production systems. Ultimately, the findings contribute towards understanding the compositional differences of bananas due to different growing conditions and production systems linked to a defined origin; thereby offering a tool to support the traceability of commercial fruits.

7.
Food Chem ; 351: 129287, 2021 Jul 30.
Article En | MEDLINE | ID: mdl-33640765

Broadband acoustic resonance dissolution spectroscopy (BARDS) is a novel method that can be used for the analysis of food-based powders, which are mainly characterized by their composition and particle morphology. This study aimed to evaluate BARDS for the compositional analysis of food powders. The changes in the BARDS spectra due to the changes in composition and particle morphology of fifteen salt mixtures (constituting of NaCl, KCl, and MgCl2) in five particle size ranges were comprehensively studied. Moreover, different regression methods were utilized to estimate each mixture component content. The results revealed that the average time-frequency spectra of each mixture in a certain particle size class were highly distinct and allowed discrimination from others. The unique spectra of each salt mixture originated from the specific dissolution rate and degassing effect of each constitutive compound. Finally, the accurate prediction of each mixture component content confirmed the consistency and efficiency of the method.


Food Analysis/methods , Powders/chemistry , Salts/analysis , Acoustics , Least-Squares Analysis , Particle Size , Principal Component Analysis , Solubility , Spectrophotometry
8.
Food Res Int ; 136: 109543, 2020 10.
Article En | MEDLINE | ID: mdl-32846598

Milk is regarded as one of the top food products susceptible to adulteration where its valuable components are specifically identified as high-risk indicators for milk fraud. The current study explores the impact of common milk adulterants on the apparent compositional parameters of milk from the Dutch market as measured by standardized Fourier transform infrared (FTIR) spectroscopy. More precisely, it examines the detectability of these adulterants at various concentration levels using the compositional parameters individually, in a univariate manner, and together in a multivariate approach. In this study we used measured boundaries but also more practical variance-adjusted boundaries to set thresholds for detection of adulteration. The potential economic impact of these adulterations under a milk payment scheme is also evaluated. Twenty-four substances were used to produce various categories of milk adulterations, each at four concentration levels. These substances comprised five protein-rich adulterants, five nitrogen-based adulterants, seven carbohydrate-based adulterants, six preservatives and water, resulting in a set of 360 samples to be analysed. The results showed that the addition of protein-rich adulterants, as well as dicyandiamide and melamine, increased the apparent protein content, while the addition of carbohydrate-based adulterants, whey protein isolate, and skimmed milk powder, increased the apparent lactose content. When considering the compositional parameters univariately, especially protein- and nitrogen-based adulterants did not raise a flag of unusual apparent concentrations at lower concentration levels. Addition of preservatives also went unnoticed. The multivariate approach did not improve the level of detection. Regarding the potential profit of milk adulteration, whey protein and corn starch seem particularly interesting. Combining the artificial inflation of valuable components, the resulting potential profit, and the gaps in detection, it appears that the whey protein isolates deserve particular attention when thinking like a criminal.


Food Contamination , Milk , Animals , Food Contamination/analysis , Fourier Analysis , Lactose , Spectroscopy, Fourier Transform Infrared
9.
Foods ; 9(6)2020 Jun 01.
Article En | MEDLINE | ID: mdl-32492929

This study aimed to assess the prevalence of ultra-high-temperature (UHT) processed milk samples suspected of being adulterated on the Chinese market and, subsequently, relate their geographical origin to the earlier determined fraud vulnerability. A total of 52 UHT milk samples purchased from the Chinese market were measured to detect possible anomalies. The milk compositional features were determined by standardized Fourier transform-infrared spectroscopy, and the detection limits for common milk adulterations were investigated. The results showed that twelve of the analysed milk samples (23%) were suspected of having quality or fraud-related issues, while one sample of these was highly suspected of being adulterated (diluted with water). Proportionally, more suspected samples were determined among milks produced in the Central-Northern and Eastern areas of China than in those from the North-Western and North-Eastern areas, while those from the South were in between. Combining the earlier collected results on fraud vulnerability in the Chinese milk chains, it appears that increased fraud prevalence relates to poorer business relationships and lack of adequate managerial controls. Since very few opportunities and motivations differ consistently across high and low-prevalence areas, primarily the improvement of control measures can help to mitigate food fraud in the Chinese milk supply chains.

10.
Food Res Int ; 129: 108882, 2020 03.
Article En | MEDLINE | ID: mdl-32036917

Traceability of agricultural produce is getting increasingly important for numerous reasons including marketing, certification, and food safety. Globally, banana (Musa spp.) with its high nutritional value and easy accessibility, is a popular fruit among consumers. Bananas are produced throughout the (sub-)tropics under a wide range of environmental conditions. Environmental conditions could influence the composition of bananas. Understanding the effect of these conditions on fruit composition provides a way of increasing the fruit's traceability and linking it to its origin - a crucial aspect for the increasing global supply chain. In this study, we examined the influence of growing conditions on the isotopic and elemental composition of bananas produced in 15 Costa Rican farms. A total of 88 bananas (peel and pulp) were collected from the farms and analysed for isotopic signatures (δ13C, δ15N, and δ18O) and elemental compositions. The growing conditions were characterized in terms of climate, topography and soil conditions. The isotopic ratios differed significantly between groups of farms. The δ13C and δ15N values were mainly influenced by soil types, while rainfall and temperatures related more to the δ18O values. The elemental compositions of the bananas were primarily influenced by the local rainfall and soil types, while the geographical origin could be distinguished using principal component analysis. The overall results link the growing conditions to the isotopic and elemental compositions of bananas, thereby also providing a way to trace its origin.


Agriculture/methods , Fruit/chemistry , Musa/chemistry , Carbon/chemistry , Costa Rica , Isotopes , Nitrogen/chemistry , Oxygen/chemistry , Principal Component Analysis , Soil/chemistry
11.
Food Chem ; 314: 126153, 2020 Jun 01.
Article En | MEDLINE | ID: mdl-31986340

The relationships between the fatty acid (FA) composition in forage and milk (F&M) from different dairy systems were investigated. Eighty milk samples and 91 forage samples were collected from 40 farms (19 organic, 11 pasture and 10 conventional) in the Netherlands, during winter and summer. The FA profiles of F&M samples were measured with gas chromatography. The results showed that the F&M of organic farms were significantly differentiated from the F&M of other farms, both in summer and winter. The differences are likely due to the different grazing strategies in summer and different forage composition in winter. The Pearson's correlation results showed the specific relationship between individual FAs in forages and related milk. A PLS-DA model was applied to classify all milks samples, resulting in 87.5% and 83.3% correct classifications of training set and validation set.


Fatty Acids/analysis , Milk/chemistry , Animal Feed , Animals , Female , Netherlands , Organic Agriculture , Seasons
12.
J Sci Food Agric ; 99(2): 893-903, 2019 Jan 30.
Article En | MEDLINE | ID: mdl-30009465

BACKGROUND: Animal products (fishmeal etc.) are typically used in commercial broiler production systems. However, progressively more pressure is placed on the animal feed industry to find alternative protein sources that are more sustainable, ethical and green, such as insect meal, without having negative effects on the sensory and meat quality. Hence this study aimed to validate the commercial value of black soldier fly (BSF) pre-pupae meal for broiler production by determining the effects of different dietary levels (0%, 5%, 10% or 15%) on carcass, sensory and meat quality. RESULTS: There were no significant differences for the carcass characteristics, pH, colour, thaw loss and cooking loss of the broilers. Treatment had no influence on the sensory characteristics (aroma, flavour, juiciness and tenderness) of the breast muscle (P > 0.05). Mineral content was similar across treatments and no differences (P > 0.05) were observed for the long-chain fatty acid composition of the cooked broiler meat. None of the fatty acids was correlated with chicken flavour. CONCLUSION: BSF pre-pupae meal (up to 15%) can be included in broiler diets without influencing the carcass, sensory or meat quality characteristics. © 2018 Society of Chemical Industry.


Animal Feed/analysis , Chickens/metabolism , Diptera/chemistry , Meat/analysis , Animals , Chickens/growth & development , Cooking , Diptera/metabolism , Fatty Acids/analysis , Humans , Minerals/analysis , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism , Pupa/chemistry , Pupa/metabolism , Taste
13.
Food Chem ; 239: 926-934, 2018 Jan 15.
Article En | MEDLINE | ID: mdl-28873654

Stable isotope ratios (13C/12C and 15N/14N) of South African lambs from different regions were measured by isotope ratio mass spectrometry (IRMS). Homogenised and defatted meat of the Longissimus lumborum muscle was assessed. The Rûens and Hantam Karoo regions had the lowest (P≤0.05) δ13C values related to the presence of C3 plants (lucerne and Karoo bushes, respectively). The Northern Karoo, Namibia and Bushmanland had the highest δ13C values likely due to a high proportion of dietary C4 grass species. The δ15N values were highest for Central Karoo, Semi-extensive, Namibia and Hantam Karoo, while Rûens and Feedlot had the lowest nitrogen isotope values (P≤0.05). Classification of origin (Karoo vs. Non-Karoo) using discriminant analysis allowed 95% and 90% correct classification of the samples for the estimation model and validation models, respectively. The results confirm that IRMS provides sufficient discriminative power to classify lamb meat of varying origin.


Sheep , Animals , Carbon Isotopes , Diet , Discriminant Analysis , Mass Spectrometry , Meat , Nitrogen Isotopes
14.
Food Chem ; 233: 331-342, 2017 Oct 15.
Article En | MEDLINE | ID: mdl-28530582

The volatile fingerprints of South African lamb meat and fat were measured by proton-transfer mass spectrometry (PTR-MS) to evaluate it as an authentication tool. Meat and fat of the Longissimus lumborum (LL) of lambs from six different regions were assessed. Analysis showed that the volatile fingerprints were affected by the origin of the meat. The classification of the origin of the lamb was achieved by examining the calculated and recorded fingerprints in combination with chemometrics. Four different partial least squares discriminant analysis (PLS-DA) models were fitted to the data to classify lamb meat and fat samples into "region of origin" (six different regions) and "origin" (Karoo vs. Non-Karoo). The estimation models classified samples 100% correctly. Validation of the first two models gave 42% (fat) and 58% (meat) correct classification of region, while the second two models performed better with 92% (fat) and 83% (meat) correct classification of origin.


Mass Spectrometry , Animals , Discriminant Analysis , Meat , Protons , Sheep
15.
J Sci Food Agric ; 97(7): 1979-1996, 2017 May.
Article En | MEDLINE | ID: mdl-27976419

Authentic meat products are gaining attention through their unique quality characteristics linked to their origin. Various factors are known to influence the quality of fresh meat. This review describes the different Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) lamb types and discusses the factors which influences its unique sensory and chemical characteristics. Flavour, aroma, texture and colour play an integral part in the sensory quality of denomination of origin fresh meat products. For authentic fresh sheep meat the sensory (as well as chemical) quality is largely influenced by diet followed by breed, age and gender. However, diet forms the link with the geographical area of origin, which together with the traditional production system and sheep breeds used, lends the product its authentic nature. This review shows how diet linked to origin can affect the quality of the meat and furthermore how other factors such as breed can also have an effect. Research relating to the authentic lamb types were evaluated and the shortcomings highlighted in order to assist with the development of PDO and PGI specifications in the future. © 2016 Society of Chemical Industry.


Meat/analysis , Sheep , Animal Feed/analysis , Animals , European Union , Humans , Meat/standards , Sheep/genetics , Sheep/growth & development , Sheep/metabolism , Taste
...