Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 17, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167392

RESUMEN

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.

2.
Nat Commun ; 14(1): 3898, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400457

RESUMEN

Built structures, i.e. the patterns of settlements and transport infrastructures, are known to influence per-capita energy demand and CO2 emissions at the urban level. At the national level, the role of built structures is seldom considered due to poor data availability. Instead, other potential determinants of energy demand and CO2 emissions, primarily GDP, are more frequently assessed. We present a set of national-level indicators to characterize patterns of built structures. We quantify these indicators for 113 countries and statistically analyze the results along with final energy use and territorial CO2 emissions, as well as factors commonly included in national-level analyses of determinants of energy use and emissions. We find that these indicators are about equally important for predicting energy demand and CO2 emissions as GDP and other conventional factors. The area of built-up land per capita is the most important predictor, second only to the effect of GDP.

3.
Sci Total Environ ; 861: 160576, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36462656

RESUMEN

With ongoing global urbanization processes and consumption patterns increasingly recognized as key determinants of environmental change, a better understanding of the links between urban consumption and biodiversity loss is paramount. Here we quantify the global biodiversity footprint (BDF) of Vienna's (Austria) biomass consumption. We present a state-of-the-art product specific approach to (a) locate the production areas required for Vienna's consumption and map Vienna's BDF by (b) linking them with data taken from a previously published countryside Species-Area-Relationship (cSAR) model with a representation of land-use intensity. We found that food has the largest share in Vienna's BDF (58 %), followed by biomass for material applications (28 %) and bioenergy (13 %). The total BDF occurs predominantly within Austria and in its neighbouring countries, with ~20 % located outside Europe. Although the per capita biomass consumption in Vienna is above the global average, global and Viennese per capita BDFs are roughly equal, indicating that Vienna sources its products from high-yield regions with efficient production systems and comparatively low native species richness. We conclude that, among others, dietary changes offer a key leverage point for reducing the urban BDF, while expanding the use of biomass for material and energy use may increase the BDF and requires appropriate monitoring.


Asunto(s)
Biodiversidad , Urbanización , Ciudades , Biomasa , Austria
4.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38504954

RESUMEN

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

5.
Global Biogeochem Cycles ; 37(8): e2023GB007813, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38439941

RESUMEN

Wildfires and land use play a central role in the long-term carbon (C) dynamics of forested ecosystems of the United States. Understanding their linkages with changes in biomass, resource use, and consumption in the context of climate change mitigation is crucial. We reconstruct a long-term C balance of forests in the contiguous U.S. using historical reports, satellite data, and other sources at multiple scales (national scale 1926-2017, regional level 1941-2017) to disentangle the drivers of biomass C stock change. The balance includes removals of forest biomass by fire, by extraction of woody biomass, by forest grazing, and by biomass stock change, their sum representing the net ecosystem productivity (NEP). Nationally, the total forest NEP increased for most of the 20th century, while fire, harvest and grazing reduced total forest stocks on average by 14%, 51%, and 6%, respectively, resulting in a net increase in C stock density of nearly 40%. Recovery from past land-use, plus reductions in wildfires and forest grazing coincide with consistent forest regrowth in the eastern U.S. but associated C stock increases were offset by increased wood harvest. C stock changes across the western U.S. fluctuated, with fire, harvest, and other disturbances (e.g., insects, droughts) reducing stocks on average by 14%, 81%, and 7%, respectively, resulting in a net growth in C stock density of 14%. Although wildfire activities increased in recent decades, harvest was the key driver in the forest C balance in all regions for most of the observed timeframe.

7.
Glob Change Biol Bioenergy ; 14(3): 246-257, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35909989

RESUMEN

Forest-based mitigation strategies will play a pivotal role in achieving the rapid and deep net-emission reductions required to prevent catastrophic climate change. However, large disagreement prevails on how to forge forest-based mitigation strategies, in particular in regions where forests are currently growing in area and carbon density. Two opposing viewpoints prevail in the current discourse: (1) A widespread viewpoint, specifically in countries in the Global North, favours enhanced wood use, including bioenergy, for substitution of emissions-intensive products and processes. (2) Others instead focus on the biophysical, resource-efficiency and time-response advantages of forest conservation and restoration for carbon sequestration and biodiversity conservation, whilst often not explicitly specifying how much wood extraction can still safeguard these ecological benefits. We here argue for a new perspective in sustainable forest research that aims at forging "no-regret" forest-based climate change mitigation strategies. Based on the consideration of forest growth dynamics and the opportunity carbon cost associated with wood use, we suggest that, instead of taking (hypothetical) wood-for-fossil substitution as starting point in assessments of carbon implications of wood products and services, analyses should take the potential and desired carbon sequestration of forests as starting point and quantify sustainable yield potentials compatible with those carbon sequestration potentials. Such an approach explicitly addresses the possible benefits provided by forests as carbon sinks, brings research on the permanence and vulnerability of C-stocks in forests, of substitution effects, as well as explorations of demand-side strategies to the forefront of research and, in particular, aligns better with the urgency to find viable climate solutions.

10.
Sci Total Environ ; 847: 157612, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901890

RESUMEN

Agroecology has been proposed as a strategy to improve food system sustainability, but has also been criticised for using land inefficiently. We compared five explorative storylines, developed in a stakeholder process, for future food systems in the EU to 2050. We modelled a range of biophysical (e.g., land use and food production), environmental (e.g., greenhouse gas emissions) and social indicators, and potential for regional food self-sufficiency, and investigated the economic policy needed to reach these futures by 2050. Two contrasting storylines for upscaling agroecological practices emerged. In one, agroecology was implemented to produce high-value products serving high-income consumers through trade but, despite 40% of agricultural area being under organic management, only two out of eight EU environmental policy targets were met. As diets followed current trends in this storyline, there were few improvements in environmental indicators compared with the current situation, despite large-scale implementation of agroecological farming practices. This suggests that large-scale implementation of agroecological practices without concurrent changes on the demand side could aggravate existing environmental pressures. However, our second agroecological storyline showed that if large-scale diffusion of agroecological farming practices were implemented alongside drastic dietary change and waste reductions, major improvements on environmental indicators could be achieved and all relevant EU policy targets met. An alternative storyline comprising sustainable intensification in combination with dietary change and waste reductions was efficient in meeting targets related to climate, biodiversity, ammonia emissions, and use of antibiotics, but did not meet targets for reductions in pesticide and fertiliser use. These results confirm the importance of dietary change for food system climate change mitigation. Economic modelling showed a need for drastic changes in consumer preferences towards more plant-based, agroecological and local foods, and for improvements in technology, for these storylines to be realised, as very high taxes and tariffs would otherwise be needed.


Asunto(s)
Gases de Efecto Invernadero , Plaguicidas , Agricultura/métodos , Amoníaco , Antibacterianos , Dieta Saludable , Fertilizantes , Política Nutricional
12.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131937

RESUMEN

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales/métodos , Ecosistema , Humanos , Energía Renovable , Cambio Social
13.
Nat Commun ; 13(1): 615, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105884

RESUMEN

Land-use has transformed ecosystems over three quarters of the terrestrial surface, with massive repercussions on biodiversity. Land-use intensity is known to contribute to the effects of land-use on biodiversity, but the magnitude of this contribution remains uncertain. Here, we use a modified countryside species-area model to compute a global account of the impending biodiversity loss caused by current land-use patterns, explicitly addressing the role of land-use intensity based on two sets of intensity indicators. We find that land-use entails the loss of ~15% of terrestrial vertebrate species from the average 5 × 5 arcmin-landscape outside remaining wilderness areas and ~14% of their average native area-of-habitat, with a risk of global extinction for 556 individual species. Given the large fraction of global land currently used under low land-use intensity, we find its contribution to biodiversity loss to be substantial (~25%). While both sets of intensity indicators yield similar global average results, we find regional differences between them and discuss data gaps. Our results support calls for improved sustainable intensification strategies and demand-side actions to reduce trade-offs between food security and biodiversity conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Vertebrados , Agricultura , Animales , Ecosistema
14.
Glob Chang Biol ; 28(1): 307-322, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651392

RESUMEN

Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.


Asunto(s)
Carbono , Ecosistema , Humanos
15.
Ecosyst Serv ; 51: 101344, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34631401

RESUMEN

Human intervention on land enhances the supply of provisioning ecosystem services, but also exerts pressures on ecosystem functioning. We utilize the Human Appropriation of Net Primary Production (HANPP) framework to assess these relations in European agriculture, for 220 NUTS2 regions. We put a particular focus on individual land system components, i.e. croplands, grasslands, and livestock husbandry and relate associated biomass flows to the potential net primary productivity NPP. For the reference year 2012, we find that 469 g dm/m2/yr (38% of NPPpot) of used biomass were harvested on total agricultural land, and that one tonne of annually harvested biomass is associated with 1.67 tonnes dry matter (dm) of HANPP, ranging from 0.8 to 8.1 tonnes dry matter (dm) across all regions. EU livestock systems are a large consumer of these provisioning ecosystem services, and invoking higher HANPP flows than current HANPP on cropland and grassland within the EU, even exceeding the potential NPP in one fifth of all NUTS2 regions. NPP remaining in ecosystems after provisioning society with biomass is essential for the functioning of ecosystems and is 563 g dm/m2/yr or 46% of NPPpot on all agricultural land. We conclude from our analysis that the HANPP framework provides useful indicators that should be integrated in future ecosystem service assessments.

16.
Nat Commun ; 12(1): 6075, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667185

RESUMEN

Understanding the carbon (C) balance in global forest is key for climate-change mitigation. However, land use and environmental drivers affecting global forest C fluxes remain poorly quantified. Here we show, following a counterfactual modelling approach based on global Forest Resource Assessments, that in 1990-2020 deforestation is the main driver of forest C emissions, partly counteracted by increased forest growth rates under altered conditions: In the hypothetical absence of changes in forest (i) area, (ii) harvest or (iii) burnt area, global forest biomass would reverse from an actual cumulative net C source of c. 0.74 GtC to a net C sink of 26.9, 4.9 and 0.63 GtC, respectively. In contrast, (iv) without growth rate changes, cumulative emissions would be 7.4 GtC, i.e., 10 times higher. Because this sink function may be discontinued in the future due to climate-change, ending deforestation and lowering wood harvest emerge here as key climate-change mitigation strategies.


Asunto(s)
Carbono/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Biomasa , Ciclo del Carbono , Secuestro de Carbono , Cambio Climático , Ecosistema , Agricultura Forestal
17.
J Environ Manage ; 286: 112228, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33677341

RESUMEN

Biomass production generates land use impacts in the form of emissions from Forestry and Other Land Use (FOLU), i.e. due to changes in ecosystem carbon stocks. Recently, consumption-based accounting (CBA) approaches have emerged as alternatives to conventional production-based accounts, quantifying FOLU emissions associated with biomass consumption, for example, of particular territories. However, the quantification and allocation of FOLU emissions to individual biomass products, a fundamental part of CBA approaches, is a complex endeavour. Existing studies make diverging methodological choices, which are rarely critically discussed. In this study, we provide a structured overview of existing CBA approaches to estimating FOLU emissions. We cluster the literature in a two-by-two grid, distinguishing the primary element under investigation (impacts of changing consumption patterns in a region vs. impacts of consumption on production landscapes) and the analytical lens (prospective vs retrospective). Further, we identify three distinct dimensions which characterise the way in which different studies allocate FOLU emissions to biomass products: the choice of reference system and the spatial and temporal scales. Finally, we identify three frontiers that require future attention: (1) overcoming structural biases which underestimate FOLU emissions from territories that experienced deforestation in the distant past, (2) explicitly tackling the interdependence of proximate causes and ultimate drivers of land use change, and (3) assessing uncertainties and understanding the effects of land management. In this way, we enable a critical assessment of appropriate methods, support a nuanced interpretation of results from particular approaches as well as enhance the informative value of CBA approaches related to FOLU emissions. Our analysis contributes to discussions on sustainable land use practices with respect to biomass consumption and has implications for informing international climate policy in scenarios where consumption-based approaches are adopted in practice.


Asunto(s)
Carbono , Ecosistema , Biomasa , Conservación de los Recursos Naturales , Estudios Prospectivos , Estudios Retrospectivos
18.
J Land Use Sci ; 15(5): 652-672, 2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-33343685

RESUMEN

This paper investigates to what extent the theories of Thomas Robert Malthus and Ester Boserup are still useful to analyse population and land-use trajectories in an industrial society at a regional scale. Following a model-based approach toward long-term socio-ecological research, we built two system dynamic models, each representing one theory, and calculated socio-ecological trajectories from 1961 to 2011 for a study region located within the Eisenwurzen region in Austria. Comparing the model trajectories with empirical data reveals opposing results for the fit of the dynamics of 'population and technology' compared to 'land use and technology'. Technology strongly influenced population development, whereas its impact on land-use intensity faded over time. Although these theories are usually seen as opposing, both models identify population development as a main driver for land-use changes, mainly population decreases that contributed to farmland abandonment. We find out-migration to be essential when applying the investigated theories to contemporary societies.

19.
Conserv Lett ; 13(4): e12713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32999687

RESUMEN

Increasing evidence-synthesized in this paper-shows that economic growth contributes to biodiversity loss via greater resource consumption and higher emissions. Nonetheless, a review of international biodiversity and sustainability policies shows that the majority advocate economic growth. Since improvements in resource use efficiency have so far not allowed for absolute global reductions in resource use and pollution, we question the support for economic growth in these policies, where inadequate attention is paid to the question of how growth can be decoupled from biodiversity loss. Drawing on the literature about alternatives to economic growth, we explore this contradiction and suggest ways forward to halt global biodiversity decline. These include policy proposals to move beyond the growth paradigm while enhancing overall prosperity, which can be implemented by combining top-down and bottom-up governance across scales. Finally, we call the attention of researchers and policy makers to two immediate steps: acknowledge the conflict between economic growth and biodiversity conservation in future policies; and explore socioeconomic trajectories beyond economic growth in the next generation of biodiversity scenarios.

20.
Nature ; 586(7831): 724-729, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057198

RESUMEN

Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2-30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental/tendencias , Cooperación Internacional , Animales , Biodiversidad , Conservación de los Recursos Naturales/economía , Análisis Costo-Beneficio , Restauración y Remediación Ambiental/economía , Mapeo Geográfico , Calentamiento Global/economía , Calentamiento Global/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...