Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 14(1): 8037, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580749

RESUMEN

Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and evaluated the effects on model fit, identifiability, and model parameters' association with clinically relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in good model fit, and the parameter estimates associated with metabolic indicators such as insulin sensitivity measures in both cases. Moreover, practical identifiability of model parameters was improved in models estimated on CGM glucose compared to plasma glucose. Together these results suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose measurements in model calibration to quantify the dynamics of glucose regulation.


Asunto(s)
Glucosa , Insulina , Humanos , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Monitoreo Continuo de Glucosa
2.
Cardiovasc Diabetol ; 23(1): 97, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493102

RESUMEN

BACKGROUND: Tissue-specific insulin resistance (IR) predominantly in muscle (muscle IR) or liver (liver IR) has previously been linked to distinct fasting metabolite profiles, but postprandial metabolite profiles have not been investigated in tissue-specific IR yet. Given the importance of postprandial metabolic impairments in the pathophysiology of cardiometabolic diseases, we compared postprandial plasma metabolite profiles in response to a high-fat mixed meal between individuals with predominant muscle IR or liver IR. METHODS: This cross-sectional study included data from 214 women and men with BMI 25-40 kg/m2, aged 40-75 years, and with predominant muscle IR or liver IR. Tissue-specific IR was assessed using the muscle insulin sensitivity index (MISI) and hepatic insulin resistance index (HIRI), which were calculated from the glucose and insulin responses during a 7-point oral glucose tolerance test. Plasma samples were collected before (T = 0) and after (T = 30, 60, 120, 240 min) consumption of a high-fat mixed meal and 247 metabolite measures, including lipoproteins, cholesterol, triacylglycerol (TAG), ketone bodies, and amino acids, were quantified using nuclear magnetic resonance spectroscopy. Differences in postprandial plasma metabolite iAUCs between muscle and liver IR were tested using ANCOVA with adjustment for age, sex, center, BMI, and waist-to-hip ratio. P-values were adjusted for a false discovery rate (FDR) of 0.05 using the Benjamini-Hochberg method. RESULTS: Sixty-eight postprandial metabolite iAUCs were significantly different between liver and muscle IR. Liver IR was characterized by greater plasma iAUCs of large VLDL (p = 0.004), very large VLDL (p = 0.002), and medium-sized LDL particles (p = 0.026), and by greater iAUCs of TAG in small VLDL (p = 0.025), large VLDL (p = 0.003), very large VLDL (p = 0.002), all LDL subclasses (all p < 0.05), and small HDL particles (p = 0.011), compared to muscle IR. In liver IR, the postprandial plasma fatty acid (FA) profile consisted of a higher percentage of saturated FA (p = 0.013), and a lower percentage of polyunsaturated FA (p = 0.008), compared to muscle IR. CONCLUSION: People with muscle IR or liver IR have distinct postprandial plasma metabolite profiles, with more unfavorable postprandial metabolite responses in those with liver IR compared to muscle IR.


Asunto(s)
Resistencia a la Insulina , Masculino , Humanos , Femenino , Resistencia a la Insulina/fisiología , Estudios Transversales , Triglicéridos , Ácidos Grasos/metabolismo , Hígado/metabolismo , Músculos/metabolismo , Periodo Posprandial/fisiología
3.
PLoS One ; 18(7): e0285820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498860

RESUMEN

Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from "bottom-up" mechanistic models to "top-down" data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals' glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R2 and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests.


Asunto(s)
Glucemia , Glucosa , Humanos , Estudios Prospectivos , Estudios Transversales , Insulina
4.
PLoS Comput Biol ; 19(6): e1011221, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352364

RESUMEN

The intricate dependency structure of biological "omics" data, particularly those originating from longitudinal intervention studies with frequently sampled repeated measurements renders the analysis of such data challenging. The high-dimensionality, inter-relatedness of multiple outcomes, and heterogeneity in the studied systems all add to the difficulty in deriving meaningful information. In addition, the subtle differences in dynamics often deemed meaningful in nutritional intervention studies can be particularly challenging to quantify. In this work we demonstrate the use of quantitative longitudinal models within the repeated-measures ANOVA simultaneous component analysis+ (RM-ASCA+) framework to capture the dynamics in frequently sampled longitudinal data with multivariate outcomes. We illustrate the use of linear mixed models with polynomial and spline basis expansion of the time variable within RM-ASCA+ in order to quantify non-linear dynamics in a simulation study as well as in a metabolomics data set. We show that the proposed approach presents a convenient and interpretable way to systematically quantify and summarize multivariate outcomes in longitudinal studies while accounting for proper within subject dependency structures.


Asunto(s)
Algoritmos , Metabolómica , Simulación por Computador , Modelos Lineales
5.
iScience ; 26(3): 106218, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36895641

RESUMEN

Current computational models of whole-body glucose homeostasis describe physiological processes by which insulin regulates circulating glucose concentrations. While these models perform well in response to oral glucose challenges, interaction with other nutrients that impact postprandial glucose metabolism, such as amino acids (AAs), is not considered. Here, we developed a computational model of the human glucose-insulin system, which incorporates the effects of AAs on insulin secretion and hepatic glucose production. This model was applied to postprandial glucose and insulin time-series data following different AA challenges (with and without co-ingestion of glucose), dried milk protein ingredients, and dairy products. Our findings demonstrate that this model allows accurate description of postprandial glucose and insulin dynamics and provides insight into the physiological processes underlying meal responses. This model may facilitate the development of computational models that describe glucose homeostasis following the intake of multiple macronutrients, while capturing relevant features of an individual's metabolic health.

6.
Cell Metab ; 35(1): 71-83.e5, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599304

RESUMEN

Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m2, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA). PhenoDiet group B showed no significant improvements in the primary outcome disposition index, but greater improvements in insulin sensitivity, glucose homeostasis, serum triacylglycerol, and C-reactive protein compared with PhenoDiet group A were observed. We demonstrate that modulating macronutrient composition within the dietary guidelines based on tissue-specific insulin resistance (IR) phenotype enhances cardiometabolic health improvements. Clinicaltrials.gov registration: NCT03708419, CCMO registration NL63768.068.17.


Asunto(s)
Enfermedades Cardiovasculares , Resistencia a la Insulina , Femenino , Humanos , Enfermedades Cardiovasculares/prevención & control , Dieta con Restricción de Grasas , Insulina , Resistencia a la Insulina/fisiología , Fenotipo , Adulto , Persona de Mediana Edad , Anciano
7.
iScience ; 25(11): 105206, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36281448

RESUMEN

Despite the pivotal role played by elevated circulating triglyceride levels in the pathophysiology of cardio-metabolic diseases many of the indices used to quantify metabolic health focus on deviations in glucose and insulin alone. We present the Mixed Meal Model, a computational model describing the systemic interplay between triglycerides, free fatty acids, glucose, and insulin. We show that the Mixed Meal Model can capture deviations in the post-meal excursions of plasma glucose, insulin, and triglyceride that are indicative of features of metabolic resilience; quantifying insulin resistance and liver fat; validated by comparison to gold-standard measures. We also demonstrate that the Mixed Meal Model is generalizable, applying it to meals with diverse macro-nutrient compositions. In this way, by coupling triglycerides to the glucose-insulin system the Mixed Meal Model provides a more holistic assessment of metabolic resilience from meal response data, quantifying pre-clinical metabolic deteriorations that drive disease development in overweight and obesity.

9.
Front Nutr ; 8: 694568, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34277687

RESUMEN

Background: It is well-established that the etiology of type 2 diabetes differs between individuals. Insulin resistance (IR) may develop in different tissues, but the severity of IR may differ in key metabolic organs such as the liver and skeletal muscle. Recent evidence suggests that these distinct tissue-specific IR phenotypes may also respond differentially to dietary macronutrient composition with respect to improvements in glucose metabolism. Objective: The main objective of the PERSON study is to investigate the effects of an optimal vs. suboptimal dietary macronutrient intervention according to tissue-specific IR phenotype on glucose metabolism and other health outcomes. Methods: In total, 240 overweight/obese (BMI 25 - 40 kg/m2) men and women (age 40 - 75 years) with either skeletal muscle insulin resistance (MIR) or liver insulin resistance (LIR) will participate in a two-center, randomized, double-blind, parallel, 12-week dietary intervention study. At screening, participants undergo a 7-point oral glucose tolerance test (OGTT) to determine the hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), classifying each participant as either "No MIR/LIR," "MIR," "LIR," or "combined MIR/LIR." Individuals with MIR or LIR are randomized to follow one of two isocaloric diets varying in macronutrient content and quality, that is hypothesized to be either an optimal or suboptimal diet, depending on their tissue-specific IR phenotype (MIR/LIR). Extensive measurements in a controlled laboratory setting as well as phenotyping in daily life are performed before and after the intervention. The primary study outcome is the difference in change in disposition index, which is the product of insulin sensitivity and first-phase insulin secretion, between participants who received their hypothesized optimal or suboptimal diet. Discussion: The PERSON study is one of the first randomized clinical trials in the field of precision nutrition to test effects of a more personalized dietary intervention based on IR phenotype. The results of the PERSON study will contribute knowledge on the effectiveness of targeted nutritional strategies to the emerging field of precision nutrition, and improve our understanding of the complex pathophysiology of whole body and tissue-specific IR. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03708419, clinicaltrials.gov as NCT03708419.

10.
PLoS Comput Biol ; 17(3): e1008852, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33788828

RESUMEN

Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Resistencia a la Insulina/fisiología , Modelación Específica para el Paciente , Adulto , Glucemia/efectos de los fármacos , Glucemia/fisiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Femenino , Glucosa/administración & dosificación , Glucosa/metabolismo , Glucosa/farmacología , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Persona de Mediana Edad , Periodo Posprandial/efectos de los fármacos , Periodo Posprandial/fisiología
11.
Mol Nutr Food Res ; 65(9): e2000848, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33682997

RESUMEN

SCOPE: Infant formula (IF) uses besides vegetable fats also bovine milk fat, which differs in triacylglycerol (TAG) structure. Furthermore, it differs in fatty acid (FA) composition. Whether changing fat source in IF affects postprandial energy metabolism, lipemic response, and blood lipid profile is unknown. METHODS AND RESULTS: A proof-of-principle study, with a randomized controlled double-blind cross-over design, is conducted. Twenty healthy male adults consumed drinks with either 100% vegetable fat (VEG) or 67% bovine milk fat and 33% vegetable fat (BOV), on 2 separate days. For a detailed insight in the postprandial responses, indirect calorimetry is performed continuously, and venous blood samples are taken every 30 min, until 5 h postprandially. No differences in postprandial energy metabolism, serum lipids, lipoprotein, or chylomicron concentrations are observed between drinks. After consumption of VEG-drink, C18:2n-6 in serum increased. Observed differences in chylomicron FA profile reflect differences in initial FA profile of test drinks. Serum ketone bodies concentrations increase following consumption of BOV-drink. CONCLUSIONS: The use of bovine milk fat in IF does neither affect postprandial energy metabolism nor lipemic response in healthy adults, but alters postprandial FA profiles and ketone metabolism. Whether the exact same effects occur in infants requires experimental verification.


Asunto(s)
Grasas de la Dieta , Metabolismo Energético , Fórmulas Infantiles , Metabolismo de los Lípidos , Leche , Periodo Posprandial/fisiología , Animales , Quilomicrones/sangre , Estudios Cruzados , Método Doble Ciego , Ácidos Grasos/análisis , Humanos , Lactante , Cuerpos Cetónicos/sangre , Lípidos/sangre , Masculino , Verduras , Adulto Joven
12.
Nutrients ; 12(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096658

RESUMEN

Different amino acids (AAs) may exert distinct effects on postprandial glucose and insulin concentrations. A quantitative comparison of the effects of AAs on glucose and insulin kinetics in humans is currently lacking. PubMed was queried to identify intervention studies reporting glucose and insulin concentrations after acute ingestion and/or intravenous infusion of AAs in healthy adults and those living with obesity and/or type 2 diabetes (T2DM). The systematic literature search identified 55 studies that examined the effects of l-leucine, l-isoleucine, l-alanine, l-glutamine, l-arginine, l-lysine, glycine, l-proline, l-phenylalanine, l-glutamate, branched-chain AAs (i.e., l-leucine, l-isoleucine, and l-valine), and multiple individual l-AAs on glucose and insulin concentrations. Oral ingestion of most individual AAs induced an insulin response, but did not alter glucose concentrations in healthy participants. Specific AAs (i.e., leucine and isoleucine) co-ingested with glucose exerted a synergistic effect on the postprandial insulin response and attenuated the glucose response compared to glucose intake alone in healthy participants. Oral AA ingestion as well as intravenous AA infusion was able to stimulate an insulin response and decrease glucose concentrations in T2DM and obese individuals. The extracted information is publicly available and can serve multiple purposes such as computational modeling.


Asunto(s)
Aminoácidos/farmacología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/sangre , Obesidad/metabolismo , Periodo Posprandial , Administración Oral , Adulto , Aminoácidos/administración & dosificación , Diabetes Mellitus Tipo 2/sangre , Femenino , Glucosa/administración & dosificación , Humanos , Infusiones Intravenosas , Cinética , Masculino , Obesidad/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...