Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Talanta ; 224: 121860, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379071

RESUMEN

C-reactive protein, cystatin C, myoglobin, and D-dimer represent the inflammatory or thromboembolic status of the patient and play important roles in early diagnostics of acute myocardial infarction. Each protein can indicate some health problems, but their simultaneous detection can be crucial for differential diagnostics. The express analysis of these proteins in a small drop of plasma was developed using magnetic beads. The suggested method is based on immunomagnetic extraction of the target analyte from plasma samples and its simultaneous labelling by fluorescent dye. Reaction time was optimized for quantification of cardiac biomarkers in the spike solutions and human plasma samples. In this paper, we developed a one-protein detection technique for each cardiac biomarker and united it to a four-protein facility using an automatic platform. The proposed technique requires only 17 µL of the human plasma and takes 14 min for four-protein measuring. The suggested technique covers concentration difference by more than two orders of magnitude and demonstrates analytical applicability by measurements of human plasma samples of 16 volunteers.


Asunto(s)
Infarto del Miocardio , Mioglobina , Biomarcadores , Humanos , Inmunoensayo , Separación Inmunomagnética , Infarto del Miocardio/diagnóstico
2.
Sci Rep ; 10(1): 21107, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273691

RESUMEN

Nanoparticles and biological molecules high throughput robust separation is of significant interest in many healthcare and nanoscience industrial applications. In this work, we report an on-chip automatic efficient separation and preconcentration method of dissimilar sized particles within a microfluidic platform using integrated membrane valves controlled microfiltration. Micro-sized E. coli bacteria are sorted from nanoparticles and preconcentrated on a microfluidic chip with six integrated pneumatic valves (sub-100 nL dead volume) using hydrophilic PVDF filter with 0.45 µm pore diameter. The proposed on-chip automatic sorting sequence includes a sample filtration, dead volume washout and retentate backflush in reverse flow. We showed that pulse backflush mode and volume control can dramatically increase microparticles sorting and preconcentration efficiency. We demonstrate that at the optimal pulse backflush regime a separation efficiency of E. coli cells up to 81.33% at a separation throughput of 120.45 µL/min can be achieved. A trimmed mode when the backflush volume is twice smaller than the initial sample results in a preconcentration efficiency of E. coli cells up to 121.96% at a throughput of 80.93 µL/min. Finally, we propose a cyclic on-chip preconcentration method which demonstrates E. coli cells preconcentration efficiency of 536% at a throughput of 1.98 µL/min and 294% preconcentration efficiency at a 10.9 µL/min throughput.


Asunto(s)
Escherichia coli/aislamiento & purificación , Técnicas Analíticas Microfluídicas/métodos , Filtración , Límite de Detección
3.
Anal Chim Acta ; 1100: 250-257, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987148

RESUMEN

Original multiscale flaked silver SERS-substrate (MFSS substrate) was applied for glycated albumin (GA) biosensing. The substrate is composed from silver flakes that have three orders of magnitude size dispersion: from 50 nm to 2 µm. The multiscale silver structure refracts the incident light and various surface plasmons are excited. Some of the internal plasmons are localized and give rise of the large local electric field. It was demonstrated that Raman scattering signal strongly depends: a) on "hot spots" formation at the edges and points of contact of silver plates, and b) on the angle of incidence. As a result the silver structure operates as an effective SERS substrate. To achieve the selectivity to glycated part, the surface of SERS-substrate was modified with 4-mercaptophenylboronic acid (4-mPBA). Various saccharides (Fru, Glc, Suc, Dex) were taken as model compounds for the glycated proteins determination. The saccharides contain cis-diol groups that form five- or six-membered ethers with boronic acid. Spectrum of SERS-substrate changes after sugar/glycated albumin treatment. Main differences in the SERS-spectra of sugar/glycated albumin treated SERS-substrate and control are referred to phenylboronic acid vibrations (999, 1021, 1072 and 1589 cm-1). Principal component analysis (PCA) and Partial Least Squares Regression (PLS-R) were used to discriminate spectra and to construct calibration curve, as well as to measure GA values in real samples of human plasma. Multiscale flaked silver SERS-substrate modified with 4-mPBA allows quantitative one-step biosensing of glycated albumin in 15 µl of human plasma.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanopartículas del Metal/química , Albúmina Sérica/análisis , Plata/química , Productos Finales de Glicación Avanzada , Humanos , Espectrometría Raman , Albúmina Sérica Glicada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA