Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Histol Histopathol ; : 18782, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38967084

RESUMEN

Extracellular adenosine triphosphate (ATP) conducts a complex dynamic system of broadly represented cell signaling. Ectonucleotidases are the enzymes with nucleotide hydrolytic ability that regulate ATP levels in physiological and pathological conditions, thus playing a key role in the so-called purinergic signaling. Altered ectonucleotidase expression has been reported in cancer, and the ectonucleoside triphosphate diphosphohydrolase (NTPDase) family of enzymes, with its best-known form NTPDase1 (CD39), is targeted in cancer immunotherapy. The tandem of enzymes CD39-CD73 is responsible for the generation of immunosuppressive adenosine in the tumor microenvironment, and inhibition strategies are of great interest. Organoids have emerged as very convenient models for the study of tumors since they are three-dimensional cultures that retain many of the features of tissue. The present study aims to contribute to improving the methodology and the molecular tools needed for the study of ectonucleotidases in healthy and disease conditions. The study, performed in an endometrial cancer cell model, could be extended to other types of tumors and pathologies in which the purinergic system is involved. We generated organoids from endometrial cancer cells overexpressing NTPDase2 (CD39L1) and NTPDase3 (CD39L3) as fusion proteins with EGFP, and we performed functional assays by adapting in situ cytochemistry protocols. This allowed us to simultaneously detect enzyme activity and protein expression and to demonstrate that organoids can be used to test ectonucleotidase inhibitors-a result that can be used to develop new cancer treatment options.

2.
Cancers (Basel) ; 16(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201612

RESUMEN

Endometrial cancer, the most prevalent gynecological malignancy in developed countries, is experiencing a sustained rise in both its incidence and mortality rates, primarily attributed to extended life expectancy and lifestyle factors. Currently, the absence of precise diagnostic tools hampers the effective management of the expanding population of women at risk of developing this disease. Furthermore, patients diagnosed with endometrial cancer require precise risk stratification to align with optimal treatment planning. Metabolomics technology offers a unique insight into the molecular landscape of endometrial cancer, providing a promising approach to address these unmet needs. This comprehensive literature review initiates with an overview of metabolomic technologies and their intrinsic workflow components, aiming to establish a fundamental understanding for the readers. Subsequently, a detailed exploration of the existing body of research is undertaken with the objective of identifying metabolite biomarkers capable of enhancing current strategies for endometrial cancer diagnosis, prognosis, and recurrence monitoring. Metabolomics holds vast potential to revolutionize the management of endometrial cancer by providing accuracy and valuable insights into crucial aspects.

3.
Front Cell Dev Biol ; 10: 1052098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467415

RESUMEN

The incidence of new cancer cases is expected to increase significantly in the future, posing a worldwide problem. In this regard, precision oncology and its diagnostic tools are essential for developing personalized cancer treatments. Digital pathology (DP) is a particularly key strategy to study the interactions of tumor cells and the tumor microenvironment (TME), which play a crucial role in tumor initiation, progression and metastasis. The purpose of this study was to integrate data on the digital patterns of reticulin fiber scaffolding and the immune cell infiltrate, transcriptomic and epigenetic profiles in aggressive uterine adenocarcinoma (uADC), uterine leiomyosarcoma (uLMS) and their respective lung metastases, with the aim of obtaining key TME biomarkers that can help improve metastatic prediction and shed light on potential therapeutic targets. Automatized algorithms were used to analyze reticulin fiber architecture and immune infiltration in colocalized regions of interest (ROIs) of 133 invasive tumor front (ITF), 89 tumor niches and 70 target tissues in a total of six paired samples of uADC and nine of uLMS. Microdissected tissue from the ITF was employed for transcriptomic and epigenetic studies in primary and metastatic tumors. Reticulin fiber scaffolding was characterized by a large and loose reticular fiber network in uADC, while dense bundles were found in uLMS. Notably, more similarities between reticulin fibers were observed in paired uLMS then paired uADCs. Transcriptomic and multiplex immunofluorescence-based immune profiling showed a higher abundance of T and B cells in primary tumor and in metastatic uADC than uLMS. Moreover, the epigenetic signature of paired samples in uADCs showed more differences than paired samples in uLMS. Some epigenetic variation was also found between the ITF of metastatic uADC and uLMS. Altogether, our data suggest a correlation between morphological and molecular changes at the ITF and the degree of aggressiveness. The use of DP tools for characterizing reticulin scaffolding and immune cell infiltration at the ITF in paired samples together with information provided by omics analyses in a large cohort will hopefully help validate novel biomarkers of tumor aggressiveness, develop new drugs and improve patient quality of life in a much more efficient way.

4.
Sci Rep ; 12(1): 14821, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050359

RESUMEN

The extracellular matrix and the correct establishment of epithelial cell polarity plays a critical role in epithelial cell homeostasis and cell polarity. In addition, loss of tissue structure is a hallmark of carcinogenesis. In this study, we have addressed the role of extracellular matrix in the cellular responses to TGF-ß. It is well known that TGF-ß is a double-edged sword: it acts as a tumor suppressor in normal epithelial cells, but conversely has tumor-promoting effects in tumoral cells. However, the factors that determine cellular outcome in response to TGF-ß remain controversial. Here, we have demonstrated that the lack of extracellular matrix and consequent loss of cell polarity inhibits TGF-ß-induced apoptosis, observed when endometrial epithelial cells are polarized in presence of extracellular matrix. Rather, in absence of extracellular matrix, TGF-ß-treated endometrial epithelial cells display features of epithelial-to-mesenchymal transition. We have also investigated the molecular mechanism of such a switch in cellular response. On the one hand, we found that the lack of Matrigel results in increased AKT signaling which is sufficient to inhibit TGF-ß-induced apoptosis. On the other hand, we demonstrate that TGF-ß-induced epithelial-to-mesenchymal transition requires ERK and SMAD2/3 activation. In summary, we demonstrate that loss of cell polarity changes the pro-apoptotic function of TGF-ß to tumor-associated phenotype such as epithelial-to-mesenchymal transition. These results may be important for understanding the dual role of TGF-ß in normal versus tumoral cells.


Asunto(s)
Transición Epitelial-Mesenquimal , Matriz Extracelular , Factor de Crecimiento Transformador beta , Apoptosis/efectos de los fármacos , Carcinogénesis/metabolismo , Endometrio/metabolismo , Células Epiteliales , Matriz Extracelular/metabolismo , Femenino , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología
5.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35740505

RESUMEN

Metabolomic profiling analysis has the potential to highlight new molecules and cellular pathways that may serve as potential therapeutic targets for disease treatment. In this study, we used an LC-MS/MS platform to define, for the first time, the specific metabolomic signature of uterine serous carcinoma (SC), a relatively rare and aggressive variant of endometrial cancer (EC) responsible for 40% of all endometrial cancer-related deaths. A metabolomic analysis of 31 ECs (20 endometrial endometrioid carcinomas (EECs) and 11 SCs) was performed. Following multivariate statistical analysis, we identified 232 statistically different metabolites among the SC and EEC patient samples. Notably, most of the metabolites identified (89.2%) were lipid species and showed lower levels in SCs when compared to EECs. In addition to lipids, we also documented metabolites belonging to amino acids and purine nucleotides (such as 2-Oxo-4-methylthiobutanoic acid, synthesised by acireductone dioxygenase 1 (ADI1) enzyme), which showed higher levels in SCs. To further investigate the role of ADI1 in SC, we analysed the expression protein levels of ADI1 in 96 ECs (67 EECs and 29 SCs), proving that the levels of ADI1 were higher in SCs compared to EECs. We also found that ADI1 mRNA levels were higher in p53 abnormal ECs compared to p53 wild type tumours. Furthermore, elevated ADI1 mRNA levels showed a statistically significant negative correlation with overall survival and progression-free survival among EEC patients. Finally, we tested the ability of ADI1 to induce migration and invasion capabilities in EC cell lines. Altogether, these results suggest that ADI1 could be a potential therapeutic target in poor-prognosis SCs and other Ecs with abnormal p53 expression.

6.
Mol Oncol ; 16(11): 2235-2259, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35167193

RESUMEN

AT-rich interactive domain-containing protein 1A (ARID1A) loss-of-function mutation accompanied by a loss of ARID1A protein expression is frequently observed in endometrial carcinomas. However, the molecular mechanisms linking these genetic changes to the altered pathways regulating tumour initiation, maintenance and/or progression remain poorly understood. Thus, the main aim of this study was to analyse the role of ARID1A loss of function in endometrial tumorigenesis. Here, using different endometrial in vitro and in vivo models, such as tumoral cell lines, 3D primary cultures and metastatic or genetically modified mouse models, we show that altered expression of ARID1A is not enough to initiate endometrial tumorigenesis. However, in an established endometrial cancer context, ARID1A loss of function accelerates tumoral progression and metastasis through the disruption of the G2/M cell cycle checkpoint and ATM/ATR-mediated DNA damage checkpoints, increases epithelial cell proliferation rates and induces epithelial mesenchymal transition through the activation of histone deacetylase 6 (HDAC6). Next, we demonstrated that the inhibition of HDAC6 function, using the HDAC6-specific inhibitor ACY1215 or by transfection with HDAC6 short hairpin RNA (shRNA), can reverse the migratory and invasive phenotype of ARID1A-knockdown cells. Further, we also show that inhibition of HDAC6 activity causes an apoptotic vulnerability to etoposide treatments in ARID1A-deficient cells. In summary, the findings exposed in this work indicate that the inhibition of HDAC6 activity is a potential therapeutic strategy for patients suffering from ARID1A-mutant endometrial cancer diagnosed in advanced stages.


Asunto(s)
Neoplasias Endometriales , Animales , Carcinogénesis/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Transición Epitelial-Mesenquimal , Femenino , Histona Desacetilasa 6/genética , Humanos , Ratones , Factores de Transcripción/genética
7.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34638474

RESUMEN

TGF-ß has a dichotomous function, acting as tumor suppressor in premalignant cells but as a tumor promoter for cancerous cells. These contradictory functions of TGF-ß are caused by different cellular contexts, including both intracellular and environmental determinants. The TGF-ß/SMAD and the PI3K/PTEN/AKT signal transduction pathways have an important role in the regulation of epithelial cell homeostasis and perturbations in either of these two pathways' contributions to endometrial carcinogenesis. We have previously demonstrated that both PTEN and SMAD2/3 display tumor-suppressive functions in the endometrium, and genetic ablation of either gene results in sustained activation of PI3K/AKT signaling that suppresses TGF-ß-induced apoptosis and enhances cell proliferation of mouse endometrial cells. However, the molecular and cellular effects of PTEN deficiency on TGF-ß/SMAD2/3 signaling remain controversial. Here, using an in vitro and in vivo model of endometrial carcinogenesis, we have demonstrated that loss of PTEN leads to a constitutive SMAD2/3 nuclear translocation. To ascertain the function of nuclear SMAD2/3 downstream of PTEN deficiency, we analyzed the effects of double deletion PTEN and SMAD2/3 in mouse endometrial organoids. Double PTEN/SMAD2/3 ablation results in a further increase of cell proliferation and enlarged endometrial organoids compared to those harboring single PTEN, suggesting that nuclear translocation of SMAD2/3 constrains tumorigenesis induced by PTEN deficiency.

8.
Front Cell Dev Biol ; 9: 670185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150764

RESUMEN

The invasive tumor front (the tumor-host interface) is vitally important in malignant cell progression and metastasis. Tumor cell interactions with resident and infiltrating host cells and with the surrounding extracellular matrix and secreted factors ultimately determine the fate of the tumor. Herein we focus on the invasive tumor front, making an in-depth characterization of reticular fiber scaffolding, infiltrating immune cells, gene expression, and epigenetic profiles of classified aggressive primary uterine adenocarcinomas (24 patients) and leiomyosarcomas (11 patients). Sections of formalin-fixed samples before and after microdissection were scanned and studied. Reticular fiber architecture and immune cell infiltration were analyzed by automatized algorithms in colocalized regions of interest. Despite morphometric resemblance between reticular fibers and high presence of macrophages, we found some variance in other immune cell populations and distinctive gene expression and cell adhesion-related methylation signatures. Although no evident overall differences in immune response were detected at the gene expression and methylation level, impaired antimicrobial humoral response might be involved in uterine leiomyosarcoma spread. Similarities found at the invasive tumor front of uterine adenocarcinomas and leiomyosarcomas could facilitate the use of common biomarkers and therapies. Furthermore, molecular and architectural characterization of the invasive front of uterine malignancies may provide additional prognostic information beyond established prognostic factors.

9.
Autophagy ; 17(5): 1077-1095, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32401642

RESUMEN

Autophagy is a highly conserved catabolic process and a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles. An increasing body of evidence has unveiled autophagy as an indispensable biological function that helps to maintain normal tissue homeostasis and metabolic fitness that can also lead to severe consequences for the normal cellular functioning when altered. Recent accumulating data point to autophagy as a key player in a wide variety of physiological and pathophysiological conditions in the human endometrium, one of the most proficient self-regenerating tissues in the human body and an instrumental player in placental species reproductive function. The current review highlights the most recent findings regarding the process of autophagy in the normal and cancerous endometrial tissue. Current research efforts aiming to therapeutically exploit autophagy and the methodological approaches used are discussed.Abbreviations: 3-MA: 3-methyladenine; ACACA (acetyl-CoA carboxylase alpha); AICAR: 5-aminoimidazole-4-carboximide riboside; AKT: AKT serine/threonine kinase; AMPK: AMP-activated protein kinase; ATG: autophagy related; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; ATG3: autophagy related 3; ATG4C: autophagy related 4C cysteine peptidase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG9: autophagy related 9; Baf A1: bafilomycin A1; BAX: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; CACNA1D: calcium voltage-gated channel subunit alpha1 D; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CASP9: caspase 9; CD44: CD44 molecule (Indian blood group); CDH1: cadherin 1; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; CQ: chloroquine; CTNNB1: catenin beta 1; DDIT3: DNA damage inducible transcript 3; EC: endometrial cancer; EGFR: epidermal growth factor receptor; EH: endometrial hyperplasia; EIF4E: eukaryotic translation initiation factor 4E; EPHB2/ERK: EPH receptor B2; ER: endoplasmic reticulum; ERBB2: er-b2 receptor tyrosine kinase 2; ERVW-1: endogenous retrovirus group W member 1, envelope; ESR1: estrogen receptor 1; FSH: follicle-stimulating hormone; GCG/GLP1: glucagon; GFP: green fluorescent protein; GIP: gastric inhibitory polypeptide; GLP1R: glucagon-like peptide-1 receptor; GLS: glutaminase; H2AX: H2A.X variant histone; HIF1A: hypoxia inducible factor 1 alpha; HMGB1: high mobility group box 1; HOTAIR: HOX transcript antisense RNA; HSPA5: heat shock protein family A (HSP70) member 5; HSPA8: heat shock protein family A (HSP70) member 8; IGF1: insulin like growth factor 1; IL27: interleukin 27; INS: insulin; ISL: isoliquiritigenin; KRAS: KRAS proto-oncogene, GTPase; LAMP2: lysosomal-associated membrane protein 2; lncRNA: long-non-coding RNA; MAP1LC3A/LC3A: microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAPK8: mitogen-activated protein kinase 8; MAPK9: mitogen-activated protein kinase 9; MPA: medroxyprogesterone acetate; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYCBP: MYC-binding protein; NFE2L2: nuclear factor, erythroid 2 like 2; NFKB: nuclear factor kappa B; NFKBIA: NFKB inhibitor alpha; NK: natural killer; NR5A1: nuclear receptor subfamily 5 group A member 1; PARP1: poly(ADP-ribose) polymerase 1; PAX2: paired box 2; PDK1: pyruvate dehydrogenase kinase 1; PDX: patient-derived xenograft; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; PIK3R1: phosphoinositide-3-kinase regulatory subunit 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPD: protopanaxadiol; PRKCD: protein kinase C delta; PROM1/CD133: prominin 1; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RFP: red fluorescent protein; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; RSV: resveratrol; SGK1: serum/glucocorticoid regulated kinase 1; SGK3: serum/glucocorticoid regulated kinase family member 3; SIRT: sirtuin; SLS: stone-like structures; SMAD2: SMAD family member 2; SMAD3: SMAD family member 3; SQSTM1: sequestosome 1; TALEN: transcription activator-like effector nuclease; TGFBR2: transforming growth factor beta receptor 2; TP53: tumor protein p53; TRIB3: tribbles pseudokinase 3; ULK1: unc-51 like autophagy activating kinase 1; ULK4: unc-51 like kinase 4; VEGFA: vascular endothelial growth factor A; WIPI2: WD repeat domain, phosphoinositide interacting 2; XBP1: X-box binding protein 1; ZFYVE1: zinc finger FYVE domain containing 1.


Asunto(s)
Autofagia/fisiología , Endometrio/metabolismo , Neoplasias/metabolismo , Placenta/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Femenino , Humanos , Hiperplasia/metabolismo , Embarazo
10.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987790

RESUMEN

Endometrial cancer (EC) is the sixth most common cancer in women. A continued number of low-risk EC patients at diagnosis, as well as patients diagnosed with advanced-stage disease, will experience an aggressive disease. Unfortunately, those patients will present recurrence or overt dissemination. Systemic cytotoxic chemotherapy treatment on advanced, recurrent, or metastatic EC patients has shown poor results, with median survival rates of less than one year, and median progression-free survival rates of four months. Therefore, the search for innovative and alternative drugs or the development of combinatorial therapies involving new targeted drugs and standard regimens is imperative. Over the last few decades, some small-molecule inhibitors have been introduced in the clinics for cancer treatment, but only a few have been approved by the Food and Drug Administration (FDA) for EC treatment. In the present review, we present the current state and future prospects of small-molecule inhibitors on EC treatment, both alone and in combination.

11.
J Invest Dermatol ; 140(6): 1253-1265, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31877318

RESUMEN

Melanoma is a malignant neoplasia that is highly resistant to chemotherapy and radiotherapy and is associated with poor prognosis in advanced stage. Targeting melanoma that harbors the common BRAFV600E mutation with kinase inhibitors, such as vemurafenib, reduces tumor burden, but these tumors frequently acquire resistance to these drugs. We previously proposed that T-type calcium channel (TTCC) expression may serve as a biomarker for melanoma progression and prognosis, and we showed that TTCC blockers reduce migration and invasion rates because of autophagy blockade only in BRAFV600E-mutant melanoma cells. Here, we demonstrated that high expression of the TTCC Cav3.1 isoform is related to autophagic status in vemurafenib-resistant BRAFV600E-mutant melanoma cells and human biopsies, and in silico analysis revealed an enrichment of Cav3.1 expression in post-treatment melanomas. We also demonstrated that the TTCC blocker mibefradil induces apoptosis and impairs migration and invasion via inhibition of autophagy in resistant melanoma cells and mouse xenograft models. Moreover, we identified an association between PTEN status and Cav3.1 expression in these cells as a marker of sensitivity to combination therapy in resistant cells. Together, our results suggest that TTCC blockers offer a potential targeted therapy in resistant BRAFV600E-mutant melanoma and a therapeutic strategy to reduce progression toward BRAF inhibitor resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/genética , Melanoma/patología , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Histopathology ; 76(3): 447-460, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31550396

RESUMEN

AIMS: Endometrial serous carcinoma (ESC) represents the most aggressive subtype of endometrial carcinoma (EC). According to The Cancer Genome Atlas (TCGA), ESC exhibits a genomic profile characterised by frequent TP53 mutations and somatic copy-number alterations (SCNA). Several studies have suggested the role of intratumour heterogeneity (ITH) in tumour progression and therapy resistance, highlighting ITH as a challenge for personalised medicine. ITH is described as the co-existence of clonal and subclonal cellular populations within a single tumour. To date, the extent and prevalence of ITH in ESC have not been fully evaluated. The aim of this study was to address ITH analysis in ESC. We performed a descriptive integrated molecular approach using targeted sequencing and multiplex ligation-dependent probe amplification (MLPA) to identify mutations and SCNA patterns, respectively. METHODS AND RESULTS: Eight ESC were examined, selecting three tumour regions per case and their corresponding normal tissue. For targeted sequencing a gene panel of 40 genes based on TCGA and other survey data was performed. For MLPA different probe mixes were used to detect SCNA in 106 genes. Analysis of mutations and SCNA were performed in each sample and comparative analysis of the three tumour regions was also conducted. Targeted sequencing showed that mutations in TP53, PIK3CA and PPP2R1A were ubiquitous in all tumour regions. Moreover, MLPA results demonstrated a high frequency of SCNA, according to the already known presence of genomic instability in ESC. Unlike the homogeneous distribution of somatic mutations, SCNA exhibited ITH affecting targetable genes such as ERBB2. CONCLUSIONS: Our study suggests that somatic gene copy-number alterations are the main source of ITH in ESC.


Asunto(s)
Biología Computacional , Variaciones en el Número de Copia de ADN , Neoplasias Endometriales/genética , Medicina de Precisión , Anciano , Anciano de 80 o más Años , Inestabilidad Cromosómica , Neoplasias Endometriales/patología , Endometrio/patología , Femenino , Dosificación de Gen , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Mutación
13.
Gynecol Oncol ; 153(2): 425-435, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30853360

RESUMEN

OBJECTIVES: The PI3K/AKT/mTOR pathway is frequently overactivated in endometrial cancer (EC). We assessed the efficacy of ABTL0812, a novel first-in-class molecule presenting a unique mechanism of action inhibiting this pathway. METHODS: We investigated the effects of ABTL0812 on proliferation, cell death and modulation of intracellular signaling pathways in a wide panel of endometrioid and non-endometrioid cell lines, an inducible PTEN knock-out murine model, and two patient-derived xenograft murine models of EC. Then, TRIB3 expression was evaluated as potential ABTL0812 pharmacodynamic biomarker in a Phase 1b/2a clinical trial. RESULTS: ABTL0812 induced an upregulation of TRIB3 expression, resulting in the PI3K/AKT/mTOR axis inhibition and autophagy cell death induction on EC cells but not in healthy endometrial cells. ABTL0812 treatment also impaired PTEN knock-out cells to progress from hyperplasia to cancer. The therapeutic effects of ABTL0812 were demonstrated in vivo. ABTL0812 increased TRIB3 mRNA levels in whole blood samples of eight EC patients, demonstrating that TRIB3 mRNA could be used as a pharmacodynamic biomarker to monitor the ABTL0812 treatment. CONCLUSIONS: ABTL0812 may represent a novel and highly effective therapeutic agent by inducing TRIB3 expression and autophagy in EC patients, including those with poorer prognosis.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Neoplasias Endometriales/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Anciano , Animales , Autofagia/efectos de los fármacos , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Humanos , Ratones , Persona de Mediana Edad , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Regulación hacia Arriba/efectos de los fármacos
14.
Virchows Arch ; 474(5): 585-598, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30710169

RESUMEN

The two most frequent types of endometrial cancer (EC) are endometrioid (EEC) and serous carcinomas (SC). Differential diagnosis between them is not always easy. A subset of endometrial cancers shows misleading microscopical features, which cause problems in differential diagnosis, and may be a good scenario for next-generation sequencing. Previous studies have assessed the usefulness of targeted sequencing with panels of generic cancer-associated genes in EC histological typing. Based on the analysis of TCGA (The Cancer Genome Atlas), EEC and SC have different mutational profiles. In this proof of principle study, we have performed targeted sequencing analysis with a customized panel, based on the TCGA mutational profile of EEC and SC, in a series of 24 tumors (16 EEC and 8 SC). Our panel comprised coding and non-coding sequences of the following genes: ABCC9, ARID1A, ARID5B, ATR, BCOR, CCND1, CDH19, CHD4, COL11A1, CSDE1, CSMD3, CTCF, CTNNB1, EP300, ERBB2, FBXW7, FGFR2, FOXA2, KLLN, KMT2B, KRAS, MAP3K4, MKI67, NRAS, PGAP3, PIK3CA, PIK3R1, PPP2R1A, PRPF18, PTEN, RPL22, SCARNA11, SIN3A, SMARCA4, SPOP, TAF1, TP53, TSPYL2, USP36, and WRAP53. Targeted sequencing validation by Sanger sequencing and immunohistochemistry was performed in a group of genes. POLE mutation status was assessed by Sanger sequencing. The most mutated genes were PTEN (93.7%), ARID1A (68.7%), PIK3CA (50%), and KMT2B (43.7%) for EEC, and TP53 (87.5%), PIK3CA (50%), and PPP2R1A (25%) for SC. Our panel allowed correct classification of all tumors in the two categories (EEC, SC). Coexistence of mutations in PTEN, ARID1A, and KMT2B was diagnostic of EEC. On the other hand, absence of PTEN, ARID1A, and KMT2B mutations in the presence of TP53 mutation was diagnostic of SC. This proof of concept study demonstrates the suitability of targeted sequencing with a customized endometrial cancer gene panel as an additional tool for confirming histological typing.


Asunto(s)
Carcinoma Endometrioide/patología , Cistadenocarcinoma Seroso/patología , Neoplasias Endometriales/patología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Adenocarcinoma de Células Claras/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Proteínas de Unión al ADN/genética , Femenino , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Mutación/genética , Proteínas de Unión al ARN/genética
15.
J Pathol ; 247(1): 72-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206933

RESUMEN

Many human cancers present Phosphatase and tensin homolog (PTEN) deficiency and between 20 and 30% of colorectal tumors show PTEN loss. The transcription factor, E2 promoter binding factor 1 (E2F-1), exhibits tumor promoter or suppressive functions depending on cellular type and tissue context, but its role in the progression and development of colorectal carcinogenesis was largely unknown. Here, using a tamoxifen-inducible PTEN knockout mouse model, we have demonstrated that loss of PTEN leads to the development of colorectal tumorigenesis through the serrated pathway. Next, we studied PTEN loss-driven colorectal lesions in the context of E2F-1 deficiency in vivo. Our results revealed that monoallelic and biallelic absence of E2F-1 led to an increased incidence and progression of serrated tumorigenesis induced by PTEN loss. Finally, we investigated the mechanisms by which double PTEN/E2F-1 deficiency leads to enhanced tumorigenesis. We found that colorectal tumors from PTEN/E2F-1 double knockout mice and the human colorectal carcinoma cell line HT29 with shRNA-mediated downregulation of PTEN and E2F-1 exhibit hyperactivation of the RAS-MAPK pathway, accumulation of DNA damage and resistance to apoptosis. To date, this is the first preclinical study evaluating the effect of genetic deletion of E2F-1 in colorectal malignancies driven by PTEN deficiency. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales/enzimología , Factor de Transcripción E2F1/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Daño del ADN , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas ras/metabolismo
16.
Pathobiology ; 85(1-2): 35-40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28614814

RESUMEN

Endometrial carcinoma (EC) shows intertumor heterogeneity, with several different histologic types differing in their morphologic and molecular features. There is also intratumoral morphologic heterogeneity, with different neoplastic cell components within the same tumor, with different morphologic and molecular features. In this article, we discuss the consequences of tumor heterogeneity in EC at the morphologic and molecular levels, by describing some illustrative examples produced by the research team. They are (1) morphologic heterogeneity in conventional EC and mixed tumors, (2) EC with microsatellite instability, (3) branched evolution as shown by exome sequencing analysis, (4) morphologic, molecular, and metabolomic differences between the tumor surface and myometrial invasion front, (5) tumor heterogeneity at the microenviromental level, (6) the sensitivity of endometrial aspirates to detect tumor heterogeneity in EC, and (7) sampling strategies to detect tumor heterogeneity in hysterectomy specimens. Tumor heterogeneity may have an important clinical impact, since it can be challenging to identify minor tumor cell populations that may have an impact on diagnosis, prognosis, and therapeutic decisions for patients with EC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Endometriales/genética , Heterogeneidad Genética , Neoplasias Ováricas/genética , Biomarcadores de Tumor/metabolismo , Linaje de la Célula , Evolución Clonal , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Exoma/genética , Femenino , Humanos , Metabolómica , Inestabilidad de Microsatélites , Mutación , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Fenotipo , Pronóstico , Proteómica , Microambiente Tumoral
17.
Cell Death Differ ; 24(8): 1443-1458, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28524854

RESUMEN

The TGF-ß/Smad and the PI3K/AKT signaling pathways are important regulators of proliferation and apoptosis, and their alterations lead to cancer development. TGF-ß acts as a tumor suppressor in premalignant cells, but it is a tumor promoter for cancerous cells. Such dichotomous actions are dictated by different cellular contexts. Here, we have unveiled a PTEN-Smad3 regulatory loop that provides a new insight in the complex cross talk between TGF-ß/Smad and PI3K/AKT signaling pathways. We demonstrate that TGF-ß triggers apoptosis of wild-type polarized endometrial epithelial cells by a Smad3-dependent activation of PTEN transcription, which results in the inhibition of PI3K/AKT signaling pathway. We show that specific Smad3 knockdown or knockout reduces basal and TGF-ß-induced PTEN expression in endometrial cells, resulting in a blockade of TGF-ß-induced apoptosis and an enhancement of cell proliferation. Likewise Smad3 deletion, PTEN knockout prevents TGF-ß-induced apoptosis and increases cell proliferation by increasing PI3K/AKT/mTOR signaling. In summary, our results demonstrate that Smad3-PTEN signaling axis determine cellular responses to TGF-ß.


Asunto(s)
Endometrio/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Fosfohidrolasa PTEN/genética , Proteína smad3/genética , Factor de Crecimiento Transformador beta/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Endometrio/citología , Endometrio/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteína smad3/antagonistas & inhibidores , Proteína smad3/deficiencia , Transcripción Genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
J Pathol ; 242(2): 152-164, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28349562

RESUMEN

PTEN is one of the most frequently mutated genes in human cancers. The frequency of PTEN alterations is particularly high in endometrial carcinomas. Loss of PTEN leads to dysregulation of cell division, and promotes the accumulation of cell cycle complexes such as cyclin D1-CDK4/6, which is an important feature of the tumour phenotype. Cell cycle proteins have been presented as key targets in the treatment of the pathogenesis of cancer, and several CDK inhibitors have been developed as a strategy to generate new anticancer drugs. Palbociclib (PD-332991) specifically inhibits CDK4/6, and it has been approved for use in metastatic breast cancer in combination with letrazole. Here, we used a tamoxifen-inducible Pten knockout mouse model to assess the antitumour effects of cyclin D1 knockout and CDK4/6 inhibition by palbociclib on endometrial tumours. Interestingly, both cyclin D1 deficiency and palbociclib treatment triggered shrinkage of endometrial neoplasias. In addition, palbociclib treatment significantly increased the survival of Pten-deficient mice, and, as expected, had a general effect in reducing tumour cell proliferation. To further analyse the effects of palbociclib on endometrial carcinoma, we established subcutaneous tumours with human endometrial cancer cell lines and primary endometrial cancer xenografts, which allowed us to provide more translational and predictive data. To date, this is the first preclinical study evaluating the response to CDK4/6 inhibition in endometrial malignancies driven by PTEN deficiency, and it reveals an important role of cyclin D-CDK4/6 activity in their development. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Antineoplásicos/farmacología , Ciclina D1/genética , Neoplasias Endometriales/tratamiento farmacológico , Fosfohidrolasa PTEN/genética , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Animales , Carcinogénesis , Ciclina D1/antagonistas & inhibidores , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/genética , Modelos Animales de Enfermedad , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , Femenino , Humanos , Ratones , Ratones Noqueados , Tamoxifeno/efectos adversos , Trasplante Heterólogo
19.
Autophagy ; 13(3): 608-624, 2017 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-28055301

RESUMEN

Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.


Asunto(s)
Autofagia , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/patología , Terapia Molecular Dirigida , Animales , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Endometriales/enzimología , Neoplasias Endometriales/ultraestructura , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Ratones Desnudos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Niacinamida/análogos & derivados , Niacinamida/farmacología , Niacinamida/uso terapéutico , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Sorafenib , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Adv Exp Med Biol ; 943: 149-207, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27910068

RESUMEN

Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/ß-Catenin, cell cycle, and TGF-ß signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Terapia Molecular Dirigida/métodos , Transducción de Señal/efectos de los fármacos , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Terapia Molecular Dirigida/tendencias , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA