Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134056

RESUMEN

Relaxin-2 is a peptide hormone with important roles in human cardiovascular and reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis, and anti-inflammatory and antifibrotic effects has led to significant interest in using relaxin-2 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2 has a very short serum half-life, limiting its clinical applications. Here, we present protein engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life while maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the hormone with a circulating half-life of around 3 to 5 days in mice while retaining potent agonist activity at the RXFP1 receptor both in vitro and in vivo.

2.
Nat Chem Biol ; 19(8): 1013-1021, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37081311

RESUMEN

The relaxin family peptide receptor 1 (RXFP1) is the receptor for relaxin-2, an important regulator of reproductive and cardiovascular physiology. RXFP1 is a multi-domain G protein-coupled receptor (GPCR) with an ectodomain consisting of a low-density lipoprotein receptor class A (LDLa) module and leucine-rich repeats. The mechanism of RXFP1 signal transduction is clearly distinct from that of other GPCRs, but remains very poorly understood. In the present study, we determine the cryo-electron microscopy structure of active-state human RXFP1, bound to a single-chain version of the endogenous agonist relaxin-2 and the heterotrimeric Gs protein. Evolutionary coupling analysis and structure-guided functional experiments reveal that RXFP1 signals through a mechanism of autoinhibition. Our results explain how an unusual GPCR family functions, providing a path to rational drug development targeting the relaxin receptors.


Asunto(s)
Relaxina , Humanos , Relaxina/química , Relaxina/metabolismo , Microscopía por Crioelectrón , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/química
3.
Nat Microbiol ; 5(6): 813-820, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32152588

RESUMEN

The shape, elongation, division and sporulation (SEDS) proteins are a highly conserved family of transmembrane glycosyltransferases that work in concert with class B penicillin-binding proteins (bPBPs) to build the bacterial peptidoglycan cell wall1-6. How these proteins coordinate polymerization of new glycan strands with their crosslinking to the existing peptidoglycan meshwork is unclear. Here, we report the crystal structure of the prototypical SEDS protein RodA from Thermus thermophilus in complex with its cognate bPBP at 3.3 Å resolution. The structure reveals a 1:1 stoichiometric complex with two extensive interaction interfaces between the proteins: one in the membrane plane and the other at the extracytoplasmic surface. When in complex with a bPBP, RodA shows an approximately 10 Å shift of transmembrane helix 7 that exposes a large membrane-accessible cavity. Negative-stain electron microscopy reveals that the complex can adopt a variety of different conformations. These data define the bPBP pedestal domain as the key allosteric activator of RodA both in vitro and in vivo, explaining how a SEDS-bPBP complex can coordinate its dual enzymatic activities of peptidoglycan polymerization and crosslinking to build the cell wall.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/química , Proteínas de Unión a las Penicilinas/química , Peptidoglicano Glicosiltransferasa/química , Multimerización de Proteína , Sitios de Unión , Pared Celular/metabolismo , Estructura Molecular , Complejos Multiproteicos/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
4.
J Biol Chem ; 295(9): 2749-2759, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31915248

RESUMEN

Adiponectin is a highly abundant protein hormone secreted by adipose tissue. It elicits diverse biological responses, including anti-diabetic, anti-inflammatory, anti-tumor, and anti-atherosclerotic effects. Adiponectin consists of a globular domain and a collagen-like domain, and it occurs in three major oligomeric forms that self-assemble: trimers, hexamers, and high-molecular-weight oligomers. Adiponectin has been reported to bind to two seven-transmembrane domain receptors, AdipoR1 and AdipoR2, as well as to the protein T-cadherin, which is highly expressed in the cardiovascular system and binds only the high-molecular-weight form of adiponectin. The molecular mechanisms underlying this specificity remain unclear. Here we used a combination of X-ray crystallography and protein engineering to define the details of adiponectin's interaction with T-cadherin. We found that T-cadherin binds to the globular domain of adiponectin, relying on structural stabilization of this domain by bound metal ions. Moreover, we show that the adiponectin globular domain can be engineered to enhance its binding affinity for T-cadherin. These results help to define the molecular basis for the interaction between adiponectin and T-cadherin, and our engineered globular domain variants may be useful tools for further investigating adiponectin's functions.


Asunto(s)
Adiponectina/metabolismo , Cadherinas/metabolismo , Ingeniería de Proteínas , Adiponectina/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Humanos , Unión Proteica , Multimerización de Proteína
5.
Annu Rev Biophys ; 47: 1-18, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29498889

RESUMEN

G protein-coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.

6.
Nat Struct Mol Biol ; 25(3): 289-296, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29434346

RESUMEN

Camelid single-domain antibody fragments ('nanobodies') provide the remarkable specificity of antibodies within a single 15-kDa immunoglobulin VHH domain. This unique feature has enabled applications ranging from use as biochemical tools to therapeutic agents. Nanobodies have emerged as especially useful tools in protein structural biology, facilitating studies of conformationally dynamic proteins such as G-protein-coupled receptors (GPCRs). Nearly all nanobodies available to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we report a fully in vitro platform for nanobody discovery based on yeast surface display. We provide a blueprint for identifying nanobodies, demonstrate the utility of the library by crystallizing a nanobody with its antigen, and most importantly, we utilize the platform to discover conformationally selective nanobodies to two distinct human GPCRs. To facilitate broad deployment of this platform, the library and associated protocols are freely available for nonprofit research.


Asunto(s)
Técnicas de Visualización de Superficie Celular , Receptores Acoplados a Proteínas G/inmunología , Anticuerpos de Dominio Único/inmunología , Especificidad de Anticuerpos , Antígenos/química , Antígenos/inmunología , Separación Celular , Citometría de Flujo , Humanos , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Anticuerpos de Dominio Único/química , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA