Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Forensic Chem ; 222021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34485765

RESUMEN

Seventeen laboratories participated in three interlaboratory exercises to assess the performance of refractive index, micro X-ray Fluorescence Spectroscopy (µXRF), and Laser Induced Breakdown Spectroscopy (LIBS) data for the forensic comparison of glass samples. Glass fragments from automotive windshields were distributed to the participating labs as blind samples and participants were asked to compare the glass samples (known vs. questioned) and report their findings as they would in casework. For samples that originated from the same source, the overall correct association rate was greater than 92% for each of the three techniques (refractive index, µXRF, and LIBS). For samples that originated from different vehicles, an overall correct exclusion rate of 82%, 96%, and 87% was observed for refractive index, µXRF, and LIBS, respectively. Special attention was given to the reporting language used by practitioners as well as the use of verbal scales and/or databases to assign a significance to the evidence. Wide variations in the reported conclusions exist between different laboratories, demonstrating a need for the standardization of the reporting language used by practitioners. Moreover, few labs used a verbal scale and/or a database to provide a weight to the evidence. It is recommended that forensic practitioners strive to incorporate the use of a verbal scale and/or a background database, if available, to provide a measure of significance to glass forensic evidence (i.e., the strength of an association or exclusion).

2.
Anal Bioanal Chem ; 405(16): 5393-409, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23673570

RESUMEN

Elemental analysis of glass was conducted by 16 forensic science laboratories, providing a direct comparison between three analytical methods [micro-x-ray fluorescence spectroscopy (µ-XRF), solution analysis using inductively coupled plasma mass spectrometry (ICP-MS), and laser ablation inductively coupled plasma mass spectrometry]. Interlaboratory studies using glass standard reference materials and other glass samples were designed to (a) evaluate the analytical performance between different laboratories using the same method, (b) evaluate the analytical performance of the different methods, (c) evaluate the capabilities of the methods to correctly associate glass that originated from the same source and to correctly discriminate glass samples that do not share the same source, and (d) standardize the methods of analysis and interpretation of results. Reference materials NIST 612, NIST 1831, FGS 1, and FGS 2 were employed to cross-validate these sensitive techniques and to optimize and standardize the analytical protocols. The resulting figures of merit for the ICP-MS methods include repeatability better than 5% RSD, reproducibility between laboratories better than 10% RSD, bias better than 10%, and limits of detection between 0.03 and 9 µg g(-1) for the majority of the elements monitored. The figures of merit for the µ-XRF methods include repeatability better than 11% RSD, reproducibility between laboratories after normalization of the data better than 16% RSD, and limits of detection between 5.8 and 7,400 µg g(-1). The results from this study also compare the analytical performance of different forensic science laboratories conducting elemental analysis of glass evidence fragments using the three analytical methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...