Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L646-L650, 2024 May 01.
Article En | MEDLINE | ID: mdl-38529551

Novel screening techniques for early detection of lung cancer are urgently needed. Profiling circulating tumor cell-free DNA (ctDNA) has emerged as a promising tool for biopsy-free tumor genotyping. However, both the scarcity and short half-life of ctDNA substantially limit the sensitivity and clinical utility of ctDNA detection methodologies. Our discovery that red blood cells (RBCs) sequester mitochondrial DNA opens a new avenue for detecting circulating nucleic acids, as RBCs represent an unrecognized reservoir of circulating nucleic acid. Here, we show that RBCs acquire tumor DNA following coculture with lung cancer cell lines harboring Kirsten rat sarcoma viral oncogene homolog (KRAS) and epidermal growth factor receptor (EGFR) mutations. RBC-bound tumor DNA is detectable in patients with early-stage non-small cell lung cancer (NSCLC) but not in healthy controls by qPCR. Our results collectively uncover a previously unrecognized yet easily accessible reservoir of tumor DNA, offering a promising foundation for future RBC-based tumor diagnostics.NEW & NOTEWORTHY We present a novel method for lung cancer detection by revealing RBCs as a reservoir for tumor DNA, overcoming the limitations of current circulating tumor ctDNA methodologies. By demonstrating that RBCs can capture tumor DNA, including critical mutations found in lung cancer, we provide a promising, biopsy-free avenue for early cancer diagnostics. This discovery opens up exciting possibilities for developing RBC-based diagnostic tools, significantly enhancing the sensitivity and clinical utility of noninvasive cancer detection.


Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Erythrocytes , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Erythrocytes/metabolism , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/diagnosis , Mutation , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Proto-Oncogene Proteins p21(ras)/genetics , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , DNA, Neoplasm/blood , DNA, Neoplasm/genetics
2.
Cancer Res ; 84(7): 1029-1047, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38270915

The clinical benefits of tumor-targeting antibodies (tAb) are modest in solid human tumors. The efficacy of many tAbs is dependent on Fc receptor (FcR)-expressing leukocytes that bind Fc fragments of tAb. Tumor-associated macrophages (TAM) and neutrophils (TAN) represent the majority of FcR+ effectors in solid tumors. A better understanding of the mechanisms by which TAMs and TANs regulate tAb response could help improve the efficacy of cancer treatments. Here, we found that myeloid effectors interacting with tAb-opsonized lung cancer cells used antibody-dependent trogocytosis (ADT) but not antibody-dependent phagocytosis. During this process, myeloid cells "nibbled off" tumor cell fragments containing tAb/targeted antigen (tAg) complexes. ADT was only tumoricidal when the tumor cells expressed high levels of tAg and the effectors were present at high effector-to-tumor ratios. If either of these conditions were not met, which is typical for solid tumors, ADT was sublethal. Sublethal ADT, mainly mediated by CD32hiCD64hi TAM, led to two outcomes: (i) removal of surface tAg/tAb complexes from the tumor that facilitated tumor cell escape from the tumoricidal effects of tAb; and (ii) acquisition of bystander tAgs by TAM with subsequent cross-presentation and stimulation of tumor-specific T-cell responses. CD89hiCD32loCD64lo peripheral blood neutrophils (PBN) and TAN stimulated tumor cell growth in the presence of the IgG1 anti-EGFR Ab cetuximab; however, IgA anti-EGFR Abs triggered the tumoricidal activity of PBN and negated the stimulatory effect of TAN. Overall, this study provides insights into the mechanisms by which myeloid effectors mediate tumor cell killing or resistance during tAb therapy. SIGNIFICANCE: The elucidation of the conditions and mechanisms by which human FcR+ myeloid effectors mediate cancer cell resistance and killing during antibody treatment could help develop improved strategies for treating solid tumors.


Neoplasms , Neutrophils , Humans , Neutrophils/metabolism , Tumor-Associated Macrophages/metabolism , Trogocytosis , Antibody-Dependent Cell Cytotoxicity , Phagocytosis , Neoplasms/pathology , Receptors, Fc , Antigens, Neoplasm
3.
Ann Thorac Surg ; 117(2): 458-465, 2024 Feb.
Article En | MEDLINE | ID: mdl-37572959

BACKGROUND: Small animal models remain invaluable for the preclinical study of emerging molecular imaging agents. However, the data obtained in this setting are generated in genetically homogenous animals that do not mimic human pathophysiology. The purpose of this study was to prospectively validate precision-cut lung slices (PCLSs) obtained from patients with lung cancer as a translational tool for the development of targeted fluorophores. METHODS: The lung tissue was gently inflated with 2% Low-Melt Agarose (Fisher, 16520050) to avoid lung damage and minimize inflation pressure. The slices were then loaded into specialized cylindrical cartridges and inserted into a compressotome, and slices 150 to 350 µm thick were cut. Samples were incubated with fluorophore conjugates for ex vivo validation and immunohistochemical staining for receptor expression. RESULTS: A total of 184 unique 3-dimensional, architecturally preserved normal lung and non-small cell lung cancer samples were obtained between 2020 and 2022. The median nodule size was 1.1 ± 0.21 cm for benign lesions and 2.1 ± 0.19 cm for malignant nodules. A total of 101 of 135 (74.8%) malignant lesions were adenocarcinoma spectrum lung cancers. The median viability was 9.78 ± 1.86 days, and 1 µM of FAPL-S0456 (high-affinity fibroblast activation protein [FAP] targeting ligand linked to the near-infrared fluorophore S0456, On Target Laboratories)-targeted near-infrared fluorochrome localization demonstrated correlative labeling of FAP-positive tumor areas with a correlation coefficient of +0.94 (P < .01). There was no FAP fluorochrome uptake in normal lungs (r = -1; P < .001). CONCLUSIONS: PCLSs comprise a novel human tissue-based translational model that can be used to validate the efficacy of molecular imaging fluorochromes. PCLSs preserve the tumor microenvironment and parenchymal architecture that closely resemble the interactions of the immune and stromal components in humans.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Fluorescent Dyes/metabolism , Lung Neoplasms/pathology , Lung/pathology , Molecular Imaging , Tumor Microenvironment
4.
Mol Imaging Biol ; 25(5): 824-832, 2023 Oct.
Article En | MEDLINE | ID: mdl-37697109

BACKGROUND: Intraoperative molecular imaging (IMI) uses tumor-targeted optical contrast agents to improve identification and clearance of cancer during surgery. Recently, pH-activatable contrast agents have been developed but none has been tested in lung cancer. Here, we report the successful clinical translation of pegsitacianine (ONM-100), a pH-activatable nanoprobe, for fluorescence-guided lung cancer resection. METHODS: We first characterized the pH setpoint for pegsitacianine fluorescence activation in vitro. We then optimized the specificity, dosing, and timing of pegsitacianine in murine flank xenograft models of lung adenocarcinoma and squamous cell carcinoma. Finally, we tested pegsitacianine in humans undergoing lung cancer surgery as part of an ongoing phase 2 trial. RESULTS: We found that the fluorescence activation of pegsitacianine occurred below physiologic pH in vitro. Using preclinical models of lung cancer, we found that the probe selectively labeled both adenocarcinoma and squamous cell carcinoma xenografts (mean tumor-to-background ratio [TBR] > 2.0 for all cell lines). In the human pilot study, we report cases in which pegsitacianine localized pulmonary adenocarcinoma and pulmonary squamous cell carcinoma (TBRs= 2.7 and 2.4) in real time to illustrate its successful clinical translation and potential to improve surgical management. CONCLUSIONS: This translational study demonstrates the feasibility of pegsitacianine as an IMI probe to label the two most common histologic subtypes of human lung cancer.


Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Mice , Animals , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Contrast Media , Pilot Projects , Fluorescent Dyes/chemistry , Carcinoma, Squamous Cell/surgery , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/surgery , Hydrogen-Ion Concentration
5.
Mol Imaging Biol ; 25(3): 569-585, 2023 06.
Article En | MEDLINE | ID: mdl-36534331

BACKGROUND: Intraoperative molecular imaging (IMI)-guided resections have been shown to improve oncologic outcomes for patients undergoing surgery for solid malignancies. The technology utilizes fluorescent tracers targeting cancer cells without the use of any ionizing radiation. However, currently available targeted IMI tracers are effective only for tumors with a highly specific receptor expression profile, and there is an unmet need for IMI tracers to label a broader range of tumor types. Here, we describe the development and testing of a novel tracer (CR)-S0456) targeted to the sodium multivitamin transporter (SMVT). METHODS: Preclinical models of fibrosarcoma (HT-1080), lung (A549), breast (4T1), and renal cancers (HEK-293 T) in vitro and in vivo were used for assessment of (CR)-S0456 specific tumor labeling via sodium-mediated SMVT uptake in dipotassium phosphate or choline chloride-containing media buffer. Additionally, pharmacologic inhibition of multiple intracellular coenzyme-R obligate signaling pathways, including holocarboxylase synthetase (sulconazole nitrate), PI3K/AKT/mTOR (omipalisib), and calmodulin-dependent phosphatase (calmidazolium), were investigated to assess (CR)-S0456 uptake kinetics. Human fibrosarcoma-bearing xenografts in athymic nude mice were used for tumor and metabolic-specific labeling. Novel NIR needle confocal laser endomicroscopic (nCLE) intratumoral sampling was performed to demonstrate single-cell specific labeling by CR-S0456. RESULTS: CR-S0456 localization in vitro correlated with highly proliferative cell lines (MTT) and doubling time (p < 0.05) with the highest microscopic fluorescence detected in aggressive human fibrosarcomas (HT-1080). Coenzyme-R-specific localization was demonstrated to be SMVT-specific after competitive inhibition of internal localization with excess administration of pantothenic acid. Inhibiting the activity of SMVT by affecting sodium ion hemostasis prevented the complete uptake of CR-S0456. In vivo validation demonstrated (CR)-S0456 localization to xenograft models with accurate identification of primary tumors as well as margin assessment down to 1 mm3 tumor volume. Systemic treatment of xenograft-bearing mice with a dual PI3K/mTOR inhibitor suppressed intratumoral cell signaling and (CR)-S0456 uptake via a reduction in SMVT expression. Novel analysis of in vivo intratumoral cytologic fluorescence using near-infrared confocal laser endomicroscopy demonstrated the absence of coenzyme-R-mediated NIR fluorescence but not fibroblast activation protein (FAP)-conjugated fluorochrome, indicating specific intracellular inhibition of coenzyme-R obligate pathways. CONCLUSION: These findings suggest that a SMVT-targeted NIR contrast agent can be a suitable tracer for imaging a wide range of malignancies as well as evaluating metabolic response to systemic therapies, similar to PET imaging with immune checkpoint inhibitors.


Fibrosarcoma , Symporters , Humans , Animals , Mice , Fluorescent Dyes , Sodium/metabolism , Sodium/pharmacology , HEK293 Cells , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Biotin/metabolism , Signal Transduction , Fibrosarcoma/diagnostic imaging , Fibrosarcoma/drug therapy
6.
Nat Commun ; 13(1): 6623, 2022 11 04.
Article En | MEDLINE | ID: mdl-36333297

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.


Cross-Priming , Lung Neoplasms , Mice , Humans , Animals , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Dendritic Cells , Lung Neoplasms/metabolism , Lysosomes , Mice, Inbred C57BL , Tumor Microenvironment
7.
Clin Cancer Res ; 28(17): 3729-3741, 2022 09 01.
Article En | MEDLINE | ID: mdl-35792882

PURPOSE: Fluorescence-guided surgery using tumor-targeted contrast agents has been developed to improve the completeness of oncologic resections. Quenched activity-based probes that fluoresce after covalently binding to tumor-specific enzymes have been proposed to improve specificity, but none have been tested in humans. Here, we report the successful clinical translation of a cathepsin activity-based probe (VGT-309) for fluorescence-guided surgery. EXPERIMENTAL DESIGN: We optimized the specificity, dosing, and timing of VGT-309 in preclinical models of lung cancer. To evaluate clinical feasibility, we conducted a canine study of VGT-309 during pulmonary tumor resection. We then conducted a randomized, double-blind, dose-escalation study in healthy human volunteers receiving VGT-309 to evaluate safety. Finally, we tested VGT-309 in humans undergoing lung cancer surgery. RESULTS: In preclinical models, we found highly specific tumor cell labeling that was blocked by a broad spectrum cathepsin inhibitor. When evaluating VGT-309 for guidance during resection of canine tumors, we found that the probe selectively labeled tumors and demonstrated high tumor-to-background ratio (TBR; range: 2.15-3.71). In the Phase I human study, we found that VGT-309 was safe at all doses studied. In the ongoing Phase II trial, we report two cases in which VGT-309 localized visually occult, non-palpable tumors (TBRs = 2.83 and 7.18) in real time to illustrate its successful clinical translation and potential to improve surgical management. CONCLUSIONS: This first-in-human study demonstrates the safety and feasibility of VGT-309 to label human pulmonary tumors during resection. These results may be generalizable to other cancers due to cathepsin overexpression in many solid tumors.


Lung Neoplasms , Surgery, Computer-Assisted , Animals , Cathepsins/metabolism , Contrast Media , Dogs , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/surgery , Randomized Controlled Trials as Topic , Surgery, Computer-Assisted/methods
8.
J Exp Med ; 219(6)2022 06 06.
Article En | MEDLINE | ID: mdl-35522219

Neutrophils are the first responders to infection and inflammation and are thus a critical component of innate immune defense. Understanding the behavior of neutrophils as they act within various inflammatory contexts has provided insights into their role in sterile and infectious diseases; however, the field of neutrophils in cancer is comparatively young. Here, we summarize key concepts and current knowledge gaps related to the diverse roles of neutrophils throughout cancer progression. We discuss sources of neutrophil heterogeneity in cancer and provide recommendations on nomenclature for neutrophil states that are distinct in maturation and activation. We address discrepancies in the literature that highlight a need for technical standards that ought to be considered between laboratories. Finally, we review emerging questions in neutrophil biology and innate immunity in cancer. Overall, we emphasize that neutrophils are a more diverse population than previously appreciated and that their role in cancer may present novel unexplored opportunities to treat cancer.


Neoplasms , Neutrophils , Humans , Immunity, Innate , Inflammation , Neoplasms/genetics , Phenotype
9.
Cancer Res Commun ; 2(11): 1372-1387, 2022 11.
Article En | MEDLINE | ID: mdl-36818489

Aberrant expression of protein kinase C (PKC) isozymes is a hallmark of cancer. The different members of the PKC family control cellular events associated with cancer development and progression. Whereas the classical/conventional PKCα isozyme has been linked to tumor suppression in most cancer types, here we demonstrate that this kinase is required for the mitogenic activity of aggressive human prostate cancer cells displaying aberrantly high PKCα expression. Immunohistochemical analysis showed abnormal up-regulation of PKCα in human primary prostate tumors. Interestingly, silencing PKCα expression from aggressive prostate cancer cells impairs cell cycle progression, proliferation and invasion, as well as their tumorigenic activity in a mouse xenograft model. Mechanistic analysis revealed that PKCα exerts a profound control of gene expression, particularly over genes and transcriptional networks associated with cell cycle progression and E2F transcription factors. PKCα RNAi depletion from PC3 prostate cancer cells led to a reduction in the expression of pro-inflammatory cytokine and epithelial-to-mesenchymal transition (EMT) genes, as well as a prominent down-regulation of the immune checkpoint ligand PD-L1. This PKCα-dependent gene expression profile was corroborated in silico using human prostate cancer databases. Our studies established PKCα as a multifunctional kinase that plays pleiotropic roles in prostate cancer, particularly by controlling genetic networks associated with tumor growth and progression. The identification of PKCα as a pro-tumorigenic kinase in human prostate cancer provides strong rationale for the development of therapeutic approaches towards targeting PKCα or its effectors.


Prostatic Neoplasms , Protein Kinase C-alpha , Male , Humans , Mice , Animals , Protein Kinase C-alpha/genetics , Gene Regulatory Networks , Protein Kinase C/genetics , Cell Division , Prostatic Neoplasms/genetics , Isoenzymes/genetics
10.
Cell Rep ; 37(5): 109905, 2021 11 02.
Article En | MEDLINE | ID: mdl-34731623

Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.


Adenocarcinoma of Lung/enzymology , Guanine Nucleotide Exchange Factors/metabolism , Lung Neoplasms/enzymology , Receptor Protein-Tyrosine Kinases/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , rac1 GTP-Binding Protein/metabolism , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Aged , Cell Movement , Epithelial Cell Adhesion Molecule/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Signal Transduction , rac1 GTP-Binding Protein/genetics , Axl Receptor Tyrosine Kinase
11.
Nat Commun ; 12(1): 3622, 2021 06 15.
Article En | MEDLINE | ID: mdl-34131120

PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.


DNA Damage , Immunity , Neutrophils/metabolism , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism , Animals , Antineoplastic Agents , Cell Line, Tumor , Cell Proliferation , Female , Humans , Lung , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , T-Lymphocytes , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
J Exp Med ; 218(4)2021 04 05.
Article En | MEDLINE | ID: mdl-33566112

In this study, using single-cell RNA-seq, cell mass spectrometry, flow cytometry, and functional analysis, we characterized the heterogeneity of polymorphonuclear neutrophils (PMNs) in cancer. We describe three populations of PMNs in tumor-bearing mice: classical PMNs, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and activated PMN-MDSCs with potent immune suppressive activity. In spleens of mice, PMN-MDSCs gradually replaced PMNs during tumor progression. Activated PMN-MDSCs were found only in tumors, where they were present at the very early stages of the disease. These populations of PMNs in mice could be separated based on the expression of CD14. In peripheral blood of cancer patients, we identified two distinct populations of PMNs with characteristics of classical PMNs and PMN-MDSCs. The gene signature of tumor PMN-MDSCs was similar to that in mouse activated PMN-MDSCs and was closely associated with negative clinical outcome in cancer patients. Thus, we provide evidence that PMN-MDSCs are a distinct population of PMNs with unique features and potential for selective targeting opportunities.


Carcinoma, Lewis Lung/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Lymphoma/immunology , Neutrophils/classification , Neutrophils/immunology , Animals , Carcinoma, Lewis Lung/pathology , Carcinoma, Non-Small-Cell Lung/blood , Case-Control Studies , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Lung Neoplasms/blood , Lymphoma/pathology , Mice , Mice, Inbred C57BL , RNA-Seq , Single-Cell Analysis , Transcriptome
13.
Cancer Res ; 81(3): 671-684, 2021 02 01.
Article En | MEDLINE | ID: mdl-33203700

Although immunotherapies of tumors have demonstrated promise for altering the progression of malignancies, immunotherapies have been limited by an immunosuppressive tumor microenvironment (TME) that prevents infiltrating immune cells from performing their anticancer functions. Prominent among immunosuppressive cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that inhibit T cells via release of immunosuppressive cytokines and engagement of checkpoint receptors. Here, we explore the properties of MDSCs and TAMs from freshly isolated mouse and human tumors and find that an immunosuppressive subset of these cells can be distinguished from the nonimmunosuppressive population by its upregulation of folate receptor beta (FRß) within the TME and its restriction to the TME. This FRß+ subpopulation could be selectively targeted with folate-linked drugs. Delivery of a folate-targeted TLR7 agonist to these cells (i) reduced their immunosuppressive function, (ii) increased CD8+ T-cell infiltration, (iii) enhanced M1/M2 macrophage ratios, (iv) inhibited tumor growth, (v) blocked tumor metastasis, and (vi) improved overall survival without demonstrable toxicity. These data reveal a broadly applicable strategy across tumor types for reprogramming MDSCs and TAMs into antitumorigenic immune cells using a drug that would otherwise be too toxic to administer systemically. The data also establish FRß as the first marker that distinguishes immunosuppressive from nonimmunosuppressive subsets of MDSCs and TAMs. Because all solid tumors accumulate MDSCs and TAMs, a general strategy to both identify and reprogram these cells should be broadly applied in the characterization and treatment of multiple tumors. SIGNIFICANCE: FRß serves as both a means to identify and target MDSCs and TAMs within the tumor, allowing for delivery of immunomodulatory compounds to tumor myeloid cells in a variety of cancers.


Folate Receptor 2/metabolism , Myeloid Cells/drug effects , Myeloid-Derived Suppressor Cells/immunology , Tumor Microenvironment/immunology , Tumor-Associated Macrophages/immunology , Adenocarcinoma/pathology , Adenocarcinoma/secondary , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Polarity , Cellular Reprogramming Techniques , Cytokines/metabolism , Folic Acid/pharmacology , Humans , Immunomodulation/drug effects , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Macrophages/cytology , Macrophages/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/pathology , Myeloid-Derived Suppressor Cells/metabolism , Tumor-Associated Macrophages/metabolism , Up-Regulation
14.
Mol Ther ; 29(2): 658-670, 2021 02 03.
Article En | MEDLINE | ID: mdl-33160076

Gene-mediated cytotoxic immunotherapy (GMCI) is an immuno-oncology approach involving local delivery of a replication-deficient adenovirus expressing herpes simplex thymidine kinase (AdV-tk) followed by anti-herpetic prodrug activation that promotes immunogenic tumor cell death, antigen-presenting cell activation, and T cell stimulation. This phase I dose-escalation pilot trial assessed bronchoscopic delivery of AdV-tk in patients with suspected lung cancer who were candidates for surgery. A single intra-tumoral AdV-tk injection in three dose cohorts (maximum 1012 viral particles) was performed during diagnostic staging, followed by a 14-day course of the prodrug valacyclovir, and subsequent surgery 1 week later. Twelve patients participated after appropriate informed consent. Vector-related adverse events were minimal. Immune biomarkers were evaluated in tumor and blood before and after GMCI. Significantly increased infiltration of CD8+ T cells was found in resected tumors. Expression of activation, inhibitory, and proliferation markers, such as human leukocyte antigen (HLA)-DR, CD38, Ki67, PD-1, CD39, and CTLA-4, were significantly increased in both the tumor and peripheral CD8+ T cells. Thus, intratumoral AdV-tk injection into non-small-cell lung cancer (NSCLC) proved safe and feasible, and it effectively induced CD8+ T cell activation. These data provide a foundation for additional clinical trials of GMCI for lung cancer patients with potential benefit if combined with other immune therapies.


Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Genetic Therapy , Immunotherapy/methods , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Adenoviridae/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cytotoxicity, Immunologic , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Lung Neoplasms/pathology , Neoadjuvant Therapy , Thymidine Kinase/genetics
15.
Cell Rep ; 33(11): 108500, 2020 12 15.
Article En | MEDLINE | ID: mdl-33326785

Immune cell function is influenced by metabolic conditions. Low-glucose, high-lactate environments, such as the placenta, gastrointestinal tract, and the tumor microenvironment, are immunosuppressive, especially for glycolysis-dependent effector T cells. We report that nicotinamide adenine dinucleotide (NAD+), which is reduced to NADH by lactate dehydrogenase in lactate-rich conditions, is a key point of metabolic control in T cells. Reduced NADH is not available for NAD+-dependent enzymatic reactions involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate dehydrogenase (PGDH). We show that increased lactate leads to a block at GAPDH and PGDH, leading to the depletion of post-GAPDH glycolytic intermediates, as well as the 3-phosphoglycerate derivative serine that is known to be important for T cell proliferation. Supplementing serine rescues the ability of T cells to proliferate in the presence of lactate-induced reductive stress. Directly targeting the redox state may be a useful approach for developing novel immunotherapies in cancer and therapeutic immunosuppression.


Lactic Acid/metabolism , NAD/metabolism , Cell Proliferation , Humans , Oxidation-Reduction
16.
JCI Insight ; 5(20)2020 10 15.
Article En | MEDLINE | ID: mdl-32960815

Giant cell arteritis (GCA) is a common form of primary systemic vasculitis in adults, with no reliable indicators of prognosis or treatment responses. We used single cell technologies to comprehensively map immune cell populations in the blood of patients with GCA and identified the CD66b+CD15+CD10lo/-CD64- band neutrophils and CD66bhiCD15+CD10lo/-CD64+/bright myelocytes/metamyelocytes to be unequivocally associated with both the clinical phenotype and response to treatment. Immature neutrophils were resistant to apoptosis, remained in the vasculature for a prolonged period of time, interacted with platelets, and extravasated into the tissue surrounding the temporal arteries of patients with GCA. We discovered that immature neutrophils generated high levels of extracellular reactive oxygen species, leading to enhanced protein oxidation and permeability of endothelial barrier in an in vitro coculture system. The same populations were also detected in other systemic vasculitides. These findings link functions of immature neutrophils to disease pathogenesis, establishing a clinical cellular signature of GCA and suggesting different therapeutic approaches in systemic vascular inflammation.


Autoimmune Diseases/immunology , Giant Cell Arteritis/metabolism , Neutrophils/immunology , Systemic Vasculitis/immunology , Vascular Diseases/metabolism , Aged , Antigens, CD/metabolism , Antigens, Surface/immunology , Antigens, Surface/metabolism , Apoptosis/genetics , Autoimmune Diseases/blood , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Cell Adhesion Molecules/metabolism , Cell Line , Cell Lineage/genetics , Coculture Techniques , Female , GPI-Linked Proteins/metabolism , Giant Cell Arteritis/immunology , Giant Cell Arteritis/pathology , Granulocyte Precursor Cells/metabolism , Granulocyte Precursor Cells/pathology , Humans , Leukocyte Count , Lewis X Antigen/metabolism , Male , Middle Aged , Neprilysin/metabolism , Neutrophils/metabolism , Neutrophils/pathology , Oxidation-Reduction , Prognosis , Reactive Oxygen Species/adverse effects , Reactive Oxygen Species/metabolism , Single-Cell Analysis , Systemic Vasculitis/blood , Systemic Vasculitis/metabolism , Systemic Vasculitis/pathology , Temporal Arteries/immunology , Temporal Arteries/metabolism , Temporal Arteries/pathology , Vascular Diseases/blood , Vascular Diseases/immunology , Vascular Diseases/pathology
17.
FASEB J ; 34(3): 4204-4218, 2020 03.
Article En | MEDLINE | ID: mdl-31957112

The accumulation of circulating low-density neutrophils (LDN) has been described in cancer patients and associated with tumor-supportive properties, as opposed to the high-density neutrophils (HDN). Here we aimed to evaluate the clinical significance of circulating LDN in lung cancer patients, and further assessed its diagnostic vs prognostic value. Using mass cytometry (CyTOF), we identified major subpopulations within the circulating LDN/HDN subsets and determined phenotypic modulations of these subsets along tumor progression. LDN were highly enriched in the low-density (LD) fraction of advanced lung cancer patients (median 7.0%; range 0.2%-80%, n = 64), but not in early stage patients (0.7%; 0.05%-6%; n = 35), healthy individuals (0.8%; 0%-3.5%; n = 15), or stable chronic obstructive pulmonary disease (COPD) patients (1.2%; 0.3%-7.4%, n = 13). Elevated LDN (>10%) remarkably related with poorer prognosis in late stage patients. We identified three main neutrophil subsets which proportions are markedly modified in cancer patients, with CD66b+ /CD10low /CXCR4+ /PDL1inter subset almost exclusively found in advanced lung cancer patients. We found substantial variability in subsets between patients, and demonstrated that HDN and LDN retain a degree of inherent spontaneous plasticity. Deep phenotypic characterization of cancer-related circulating neutrophils and their modulation along tumor progression is an important advancement in understanding the role of myeloid cells in lung cancer.


Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Neutrophils/metabolism , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Adult , Aged , Aged, 80 and over , Antigens, CD/immunology , Antigens, CD/metabolism , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/metabolism , Female , Flow Cytometry , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Lung Neoplasms/pathology , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Middle Aged , Prognosis , Pulmonary Disease, Chronic Obstructive/pathology
18.
Oncoimmunology ; 8(9): e1638211, 2019.
Article En | MEDLINE | ID: mdl-31428531

Given the growing interest and promising preliminary results of immunotherapy in malignant pleural mesothelioma (MPM), it has become important to more fully understand the immune landscape in this tumor. This may be especially relevant in deciding who might benefit most from checkpoint blockade or agonist antibody therapy. Since the phenotype of tumor infiltrating lymphocytes (TILs) in MPM has not been fully described and their function has not been carefully assessed, we collected fresh tumor and blood from 22 patients undergoing surgical resection and analysed single cell suspensions by flow cytometry. The functionality of TILs was assessed by measurement of cytokine expression (IFN-γ) following overnight stimulation ex vivo. Results showed low numbers of CD8+ TILs whose function was either moderately or severely suppressed. The degree of TIL hypofunction did not correlate with the presence of co-existing macrophages or neutrophils, nor with expression of the inhibitory receptors PD-1, CD39 and CTLA-4. Hypofunction was associated with higher numbers of CD4 regulatory T cells (Tregs) and with expression of the inhibitory receptor TIGIT. On the other hand, presence of tissue-resident memory (Trm) cells and expression of TIM-3 on CD8+ cells were positively associated with cytokine production. However, Trm function was partially suppressed when the transcription factor Eomesodermin (Eomes) was co-expressed. Understanding the function of TILs in malignant mesothelioma may have clinical implications for immunotherapy, especially in choosing the best immunotherapy targets. Our data suggests that Treg cell blocking agents or TIGIT inhibitor antibodies might be especially valuable in these patients.

19.
Cancer Immunol Res ; 7(6): 896-909, 2019 06.
Article En | MEDLINE | ID: mdl-31053597

Cancer progression is marked by dysfunctional tumor-infiltrating lymphocytes (TIL) with high inhibitory receptor (IR) expression. Because IR blockade has led to clinical responses in some patients with non-small cell lung cancer (NSCLC), we investigated how IRs influenced CD8+ TIL function from freshly digested early-stage NSCLC tissues using a killing assay and intracellular cytokine staining after in vitro T-cell restimulation. Early-stage lung cancer TIL function was heterogeneous with only about one third of patients showing decrements in cytokine production and lytic function. TIL hypofunction did not correlate with clinical factors, coexisting immune cells (macrophages, neutrophils, or CD4+ T regulatory cells), nor with PD-1, TIGIT, TIM-3, CD39, or CTLA-4 expression. Instead, we found that the presence of the integrin αeß7 (CD103), characteristic of tissue-resident memory cells (TRM), was positively associated with cytokine production, whereas expression of the transcription factor Eomesodermin (Eomes) was negatively associated with TIL function. These data suggest that the functionality of CD8+ TILs from early-stage NSCLCs may be influenced by competition between an antitumor CD103+ TRM program and an exhaustion program marked by Eomes expression. Understanding the mechanisms of T-cell function in the progression of lung cancer may have clinical implications for immunotherapy.


Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Aged , Aged, 80 and over , Biological Variation, Population , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cause of Death , Female , Gene Expression , Humans , Immunologic Memory , Immunophenotyping , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Neoplasm Staging , Prognosis , Tumor Microenvironment/immunology
20.
Sci Transl Med ; 11(479)2019 02 13.
Article En | MEDLINE | ID: mdl-30760579

Data from mouse tumor models suggest that tumor-associated monocyte/macrophage lineage cells (MMLCs) dampen antitumor immune responses. However, given the fundamental differences between mice and humans in tumor evolution, genetic heterogeneity, and immunity, the function of MMLCs might be different in human tumors, especially during early stages of disease. Here, we studied MMLCs in early-stage human lung tumors and found that they consist of a mixture of classical tissue monocytes and tumor-associated macrophages (TAMs). The TAMs coexpressed M1/M2 markers, as well as T cell coinhibitory and costimulatory receptors. Functionally, TAMs did not primarily suppress tumor-specific effector T cell responses, whereas tumor monocytes tended to be more T cell inhibitory. TAMs expressing relevant MHC class I/tumor peptide complexes were able to activate cognate effector T cells. Mechanistically, programmed death-ligand 1 (PD-L1) expressed on bystander TAMs, as opposed to PD-L1 expressed on tumor cells, did not inhibit interactions between tumor-specific T cells and tumor targets. TAM-derived PD-L1 exerted a regulatory role only during the interaction of TAMs presenting relevant peptides with cognate effector T cells and thus may limit excessive activation of T cells and protect TAMs from killing by these T cells. These results suggest that the function of TAMs as primarily immunosuppressive cells might not fully apply to early-stage human lung cancer and might explain why some patients with strong PD-L1 positivity fail to respond to PD-L1 therapy.


Lung Neoplasms/immunology , Lung Neoplasms/pathology , Macrophages/pathology , Monocytes/pathology , T-Lymphocytes/immunology , A549 Cells , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Communication , Histocompatibility Antigens Class I/metabolism , Humans , Lipopolysaccharide Receptors/metabolism , Neoplasm Proteins/metabolism , Neoplasm Staging , Peptides/metabolism , Phenotype , Signal Transduction
...