Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PhytoKeys ; 187: 93-128, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35068970

RESUMEN

Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology, Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.

2.
PLoS One ; 9(4): e94724, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24718701

RESUMEN

The Rancho La Brea Tar Pits is the world's richest and most important Late Pleistocene fossil locality and best renowned for numerous fossil mammals and birds excavated over the past century. Less researched are insects, even though these specimens frequently serve as the most valuable paleoenvironemental indicators due to their narrow climate restrictions and life cycles. Our goal was to examine fossil material that included insect-plant associations, and thus an even higher potential for significant paleoenviromental data. Micro-CT scans of two exceptionally preserved leafcutter bee nest cells from the Rancho La Brea Tar Pits in Los Angeles, California reveal intact pupae dated between ∼23,000-40,000 radiocarbon years BP. Here identified as best matched to Megachile (Litomegachile) gentilis Cresson (Hymenoptera: Megachilidae) based on environmental niche models as well as morphometrics, the nest cells (LACMRLP 388E) document rare preservation and life-stage. The result of complex plant-insect interactions, they offer new insights into the environment of the Late Pleistocene in southern California. The remarkable preservation of the nest cells suggests they were assembled and nested in the ground where they were excavated. The four different types of dicotyledonous leaves used to construct the cells were likely collected in close proximity to the nest and infer a wooded or riparian habitat with sufficient pollen sources for larval provisions. LACMRLP 388E is the first record of fossil Megachile Latreille cells with pupae. Consequently, it provides a pre-modern age location for a Nearctic group, whose phylogenetic relationships and biogeographic history remain poorly understood. Megachile gentilis appears to respond to climate change as it has expanded its distribution across elevation gradients over time as estimated by habitat suitability comparisons between low and high elevations; it currently inhabits mesic habitats which occurred at a lower elevation during the Last Glacial Maximum ∼21,000 years ago. Nevertheless, the broad ecological niche of M. gentilis appears to have remained stable.


Asunto(s)
Abejas/fisiología , Ambiente , Herbivoria/fisiología , Comportamiento de Nidificación/fisiología , Paleontología , Hojas de la Planta/fisiología , Animales , Femenino , Geografía , Los Angeles , Masculino , Análisis de Componente Principal , Pupa/fisiología , Factores de Tiempo , Microtomografía por Rayos X
3.
Am J Bot ; 93(2): 197-205, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21646180

RESUMEN

Pinus baileyi from the Paleogene of Idaho was initially related to the bristlecone pine P. longaeva (subgen. Strobus, sect. Parrya, subsect. Balfourianae) from western North America. Unlike the centromucronate condition in P. longaeva, P. baileyi cones have raised umbos that are excentromucronate, i.e., the mucro positioned in the upper umbo field above the keel. Cone size and scale morphology shows that P. baileyi more closely resembles excentromucronate pines of subsects. Halepenses and Pinus sensu Gernandt et al. (2005, Taxon 54: 29-42), but is most similar to P. resinosa, P. kesiya, and P. massoniana of subsect. Pinus. Morphologically, P. baileyi resembles the fossil species P. princetonensis and P. arnoldii from the Eocene Princeton Chert, British Columbia, Canada. Pinus baileyi extends the western North American range of ovulate cones resembling subsect. Pinus from the middle Eocene of British Columbia, Canada and Washington, USA to the Oligocene of Idaho, USA. Pinus baileyi, and possibly P. princetonensis and P. arnoldii, indicates the presence of early populations of subsect. Pinus-type pines in the western cordillera of North America, raising the possibility that P. resinosa and P. tropicalis may have evolved from this group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...