Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Blood Adv ; 7(17): 4782-4793, 2023 09 12.
Article En | MEDLINE | ID: mdl-36399516

Sickle cell disease nephropathy (SCDN), a common SCD complication, is strongly associated with mortality. Polygenic risk scores calculated from recent transethnic meta-analyses of urinary albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR) trended toward association with proteinuria and eGFR in SCD but the model fit was poor (R2 < 0.01), suggesting that there are likely unique genetic risk factors for SCDN. Therefore, we performed genome-wide association studies (GWAS) for 2 critical manifestations of SCDN, proteinuria and decreased eGFR, in 2 well-characterized adult SCD cohorts, representing, to the best of our knowledge, the largest SCDN sample to date. Meta-analysis identified 6 genome-wide significant associations (false discovery rate, q ≤ 0.05): 3 for proteinuria (CRYL1, VWF, and ADAMTS7) and 3 for eGFR (LRP1B, linc02288, and FPGT-TNNI3K/TNNI3K). These associations are independent of APOL1 risk and represent novel SCDN loci, many with evidence for regulatory function. Moreover, GWAS SNPs in CRYL1, VWF, ADAMTS7, and linc02288 are associated with gene expression in kidney and pathways important to both renal function and SCD biology, supporting the hypothesis that SCDN pathophysiology is distinct from other forms of kidney disease. Together, these findings provide new targets for functional follow-up that could be tested prospectively and potentially used to identify patients with SCD who are at risk, before onset of kidney dysfunction.


Anemia, Sickle Cell , Kidney Diseases , Vascular Diseases , Adult , Humans , Genome-Wide Association Study , ADAMTS7 Protein/genetics , von Willebrand Factor/genetics , Kidney Diseases/genetics , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Proteinuria/complications , Protein Serine-Threonine Kinases/genetics , Apolipoprotein L1/genetics
2.
Sci Signal ; 10(500)2017 Oct 10.
Article En | MEDLINE | ID: mdl-29018170

Birth defects of the heart and face are common, and most have no known genetic cause, suggesting a role for environmental factors. Maternal fever during the first trimester is an environmental risk factor linked to these defects. Neural crest cells are precursor populations essential to the development of both at-risk tissues. We report that two heat-activated transient receptor potential (TRP) ion channels, TRPV1 and TRPV4, were present in neural crest cells during critical windows of heart and face development. TRPV1 antagonists protected against the development of hyperthermia-induced defects in chick embryos. Treatment with chemical agonists of TRPV1 or TRPV4 replicated hyperthermia-induced birth defects in chick and zebrafish embryos. To test whether transient TRPV channel permeability in neural crest cells was sufficient to induce these defects, we engineered iron-binding modifications to TRPV1 and TRPV4 that enabled remote and noninvasive activation of these channels in specific cellular locations and at specific developmental times in chick embryos with radio-frequency electromagnetic fields. Transient stimulation of radio frequency-controlled TRP channels in neural crest cells replicated fever-associated defects in developing chick embryos. Our data provide a previously undescribed mechanism for congenital defects, whereby hyperthermia activates ion channels that negatively affect fetal development.


Congenital Abnormalities/etiology , Fever/complications , Heart Failure/etiology , Neural Crest/pathology , TRPV Cation Channels/metabolism , Animals , Chick Embryo , Chickens , Congenital Abnormalities/metabolism , Congenital Abnormalities/pathology , Female , Heart Failure/metabolism , Heart Failure/pathology , Maternal-Fetal Exchange , Mice , Mice, Inbred C57BL , Neural Crest/metabolism , Pregnancy , Zebrafish
3.
Toxicol Sci ; 143(2): 469-81, 2015 Feb.
Article En | MEDLINE | ID: mdl-25412620

Polycyclic aromatic hydrocarbons (PAHs) induce developmental defects including cardiac deformities in fish. The aryl hydrocarbon receptor (AHR) mediates the toxicity of some PAHs. Exposure to a simple PAH mixture during embryo development consisting of an AHR agonist (benzo(a)pyrene-BaP) with fluoranthene (FL), an inhibitor of cytochrome p450 1(CYP1)--a gene induced by AHR activation--results in cardiac deformities. Exposure to BaP or FL alone at similar concentrations alters heart rates, but does not induce morphological deformities. Furthermore, AHR2 knockdown prevents the toxicity of BaP + FL mixture. Here, we used a zebrafish microarray analysis to identify heart-specific transcriptomic changes during early development that might underlie cardiotoxicity of BaP + FL. We used AHR2 morphant embryos to determine the role of this receptor in mediating toxicity. Control and knockdown embryos at 36 h post-fertilization were exposed to DMSO, 100 µg/l BaP, 500 µg/l FL, or 100 µg/l BaP + 500 µg/l FL, and heart tissues for RNA were extracted at 2, 6, 12, and 18 h-post-exposure (hpe), prior to the appearance of cardiac deformities. Data show AHR2-dependent BaP + FL effects on expression of genes involved in protein biosynthesis and neuronal development in addition to signaling molecules and their associated molecular pathways. Ca(2+)-cycling and muscle contraction genes were the most significantly differentially expressed category of transcripts when comparing BaP + FL-treated AHR2 morphant and control embryos. These differences were most prominent at 2 and 6 hpe. Therefore, we postulate that BaP + FL may affect cellular Ca(2+) levels and subsequently cardiac muscle function, potentially underlying BaP + FL cardiotoxicity.


Benzo(a)pyrene/toxicity , Embryonic Development/drug effects , Fluorenes/toxicity , Heart/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Transcriptome/drug effects , Zebrafish Proteins/metabolism , Animals , Calcium/metabolism , Cardiotoxicity , Drug Synergism , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Heart/embryology , Heart Defects, Congenital/chemically induced , Heart Defects, Congenital/metabolism , Receptors, Aryl Hydrocarbon/genetics , Transcriptome/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
4.
Environ Int ; 35(6): 971-86, 2009 Aug.
Article En | MEDLINE | ID: mdl-19375165

Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.


Environmental Pollution , Greenhouse Effect , Air Pollutants/toxicity , Environmental Exposure , Humans , Hypersensitivity/epidemiology , Organic Chemicals/toxicity , Particulate Matter/toxicity , Pesticides/toxicity , Pulmonary Heart Disease/epidemiology
5.
Toxicol Sci ; 106(1): 193-205, 2008 Nov.
Article En | MEDLINE | ID: mdl-18660518

We have used zebrafish and 3,3',4,4',5-pentachlorobiphenyl (PCB126) to investigate the developmental toxicity of polychlorinated biphenyls (PCBs) that exert their effects through the aryl hydrocarbon receptor (AHR). We found that cardiac and neural crest (NC)-derived jaw and branchial cartilages are specifically targeted early in development. The suite of malformations, which ultimately leads to circulatory failure, includes a severely dysmorphic heart with a reduced bulbus arteriosus and abnormal atrioventricular and outflow valve formation. Early NC migration and patterning of the jaw and branchial cartilages was normal. However, the jaw and branchial cartilages failed to grow to normal size. In the heart, the ventricular myocardium showed a reduction in cell number and size. The heart and jaw/branchial phenotype could be rescued by pifithrin-alpha, a blocker of p53. However, the function of pifithrin-alpha in this model may act as a competitive inhibitor of PCB at the AHR and is likely independent of p53. Morpholinos against p53 did not rescue the phenotype, nor were zebrafish with a mutant p53-null allele resistant to PCB126 toxicity. Morpholino knockdown of cardiac troponin T, which blocks the onset of cardiac function, prevented the PCB126-induced cardiac dysmorphogenesis but not the jaw/branchial phenotype. The cardiovascular characteristics appear to be similar to hypoplastic left heart syndrome (HLHS) and introduce the potential of zebrafish as a model to study this environmentally induced cardiovascular malformation. HLHS is a severe congenital cardiovascular malformation that has previously been linked to industrial releases of dioxins and PCBs.


Abnormalities, Multiple/chemically induced , Branchial Region/drug effects , Environmental Pollutants/toxicity , Heart Defects, Congenital/chemically induced , Heart Ventricles/drug effects , Neural Crest/drug effects , Polychlorinated Biphenyls/toxicity , Zebrafish/embryology , Abnormalities, Multiple/embryology , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/prevention & control , Animals , Animals, Genetically Modified , Benzothiazoles/pharmacology , Body Patterning/drug effects , Branchial Region/metabolism , Cell Death , Cell Differentiation , Cell Movement , Cell Proliferation/drug effects , Heart Defects, Congenital/embryology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/prevention & control , Heart Ventricles/embryology , Heart Ventricles/metabolism , Jaw Abnormalities/chemically induced , Morpholines/metabolism , Oligonucleotides/metabolism , Phenotype , Time Factors , Toluene/analogs & derivatives , Toluene/pharmacology , Troponin T/genetics , Troponin T/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Zebrafish/genetics , Zebrafish/metabolism
6.
J Bacteriol ; 187(12): 4042-9, 2005 Jun.
Article En | MEDLINE | ID: mdl-15937167

Oxidative stress in Bacillus subtilis results in the accumulation of Spx protein, which exerts both positive and negative transcriptional control over a genome-wide scale through its interaction with the RNA polymerase alpha subunit. Previous microarray transcriptome studies uncovered a unique class of genes that are controlled by Spx-RNA polymerase interaction under normal growth conditions that do not promote Spx overproduction. These genes were repressed by Spx when sulfate was present as a sole sulfur source. The genes include those of the ytmI, yxeI, and ssu operons, which encode products resembling proteins that function in the uptake and desulfurization of organic sulfur compounds. Primer extension and analysis of operon-lacZ fusion expression revealed that the operons are repressed by sulfate and cysteine; however, Spx functioned only in sulfate-dependent repression. Both the ytmI operon and the divergently transcribed ytlI, encoding a LysR-type regulator that positively controls ytmI operon transcription, are repressed by Spx in sulfate-containing media. The CXXC motif of Spx, which is necessary for redox sensitive control of Spx activity in response to oxidative stress, is not required for sulfate-dependent repression. The yxeL-lacZ and ssu-lacZ fusions were also repressed in an Spx-dependent manner in media containing sulfate as the sole sulfur source. This work uncovers a new role for Spx in the control of sulfur metabolism in a gram-positive bacterium under nonstressful growth conditions.


Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/physiology , Gene Expression Regulation, Bacterial/physiology , Repressor Proteins/physiology , Sulfur Compounds/metabolism , Base Sequence , Cysteine/physiology , Down-Regulation , Molecular Sequence Data , Mutation , Sulfates/metabolism
7.
Mol Microbiol ; 55(2): 498-510, 2005 Jan.
Article En | MEDLINE | ID: mdl-15659166

The Spx protein is indispensable for survival of Bacillus subtilis under disulphide stress. Its interaction with the alpha-subunit of RNA polymerase is required for transcriptional induction of genes that function in thiol homeostasis, such as thioredoxin (trxA) and thioredoxin reductase (trxB). The N-terminal end of Spx contains a Cys-X-X-Cys (CXXC) motif, which is a likely target for redox-sensitive control. We show here that Spx directly activates trxA and -B transcription by interacting with the RNA polymerase alpha-subunit, but it does so only under an oxidized condition. The transcriptional activation by Spx requires formation of an intramolecular disulphide bond between two cysteine residues that reside in the CXXC motif. The mechanism of Spx-dependent transcriptional activation is unique in that it does not involve initial Spx-DNA interaction.


Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Oxidative Stress , Transcription, Genetic , Amino Acid Motifs , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases/metabolism , Disulfides/metabolism , Oxidation-Reduction , Sulfhydryl Compounds/metabolism , Thioredoxin-Disulfide Reductase/chemistry , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/metabolism , Transcriptional Activation
...