Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(29): 11321-11336, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055009

RESUMEN

The coordination of the Lewis superacid tris(pentafluorophenyl)alane (AlCF) to phosphine-supported, group 6 bis(dinitrogen) complexes [ML2(N2)2] is explored, with M = Cr, Mo or W and L = dppe (1,2-bis(diphenylphosphino)ethane), depe (1,2-bis(diethylphosphino)ethane), dmpe (1,2-bis(dimethylphosphino)ethane) or 2 × PMe2Ph. Akin to tris(pentafluorophenyl)borane (BCF), AlCF can form 1 : 1 adducts by coordination to one distal nitrogen of general formula trans-[ML2(N2){(µ-η1:η1-N2)Al(C6F5)3}]. The boron and aluminium adducts are structurally similar, showing a comparable level of N2 push-pull activation. A notable exception is a bent (BCF adducts) vs. linear (AlCF adducts) M-N-N-LA motif (LA = Lewis acid), explained computationally as the result of steric repulsion. A striking difference arose when the formation of two-fold adducts was conducted. While in the case of BCF the 2 : 1 Lewis pairs could be observed in equilibrium with the 1 : 1 adduct and free borane but resisted isolation, AlCF forms robust 2 : 1 adducts trans-[ML2{(µ-η1:η1-N2)Al(C6F5)3}2] that isomerise into a more stable cis configuration. These compounds could be isolated and structurally characterized, and represent the first examples of trinuclear heterometallic complexes formed by Lewis acid-base interaction exhibiting p and d elements. Calculations also demonstrate that from the bare complex to the two-fold aluminium adduct, substantial decrease of the HOMO-LUMO gap is observed, and, unlike the trans adducts (1 : 1 and 1 : 2) for which the HOMO was computed to be a pure d orbital, the one of the cis-trinuclear compounds mixes a d orbital with a π* one of each N2 ligands. This may translate into a more favourable electrophilic attack on the N2 ligands instead of the metal centre, while a stabilized N2-centered LUMO should ease electron transfer, suggesting Lewis acids could be co-activators for electro-catalysed N2 reduction. Experimental UV-vis spectra for the tungsten family of compounds were compared with TD-DFT calculations (CAM-B3LYP/def2-TZVP), allowing to assign the low extinction bands found in the visible spectrum to unusual low-lying MLCT involving N2-centered orbitals. As significant red-shifts are observed upon LA coordination, this could have important implications for the development of visible light-driven nitrogen fixation.

2.
Angew Chem Int Ed Engl ; 63(16): e202400992, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38373040

RESUMEN

A Surface OrganoMetallic Chemistry (SOMC) approach is used to prepare a novel hafnium-iridium catalyst immobilized on silica, HfIr/SiO2, featuring well-defined [≡SiOHf(CH2 tBu)2(µ-H)3IrCp*] surface sites. Unlike the monometallic analogous materials Hf/SiO2 and Ir/SiO2, which promote n-pentane deuterogenolysis through C-C bond scission, we demonstrate that under the same experimental conditions (1 bar D2, 250 °C, 3 h, 0.5 mol %), the heterobimetallic catalyst HfIr/SiO2 is highly efficient and selective for the perdeuteration of alkanes with D2, exemplified on n-pentane, without substantial deuterogenolysis (<2 % at 95 % conversion). Furthermore this HfIr/SiO2 catalyst is robust and can be re-used several times without evidence of decomposition. This represents substantial advance in catalytic H/D isotope exchange (HIE) reactions of C(sp3)-H bonds.

3.
Chem Sci ; 14(48): 14262-14270, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38098710

RESUMEN

A Lewis superacidic bis(borane) C6F4{B(C6F5)2}2 was reacted with tungsten N2-complexes [W(N2)2(R2PCH2CH2PR2)2] (R = Ph or Et), affording zwitterionic boryldiazenido W(ii) complexes trans-[W(L)(R2PCH2CH2PR2)2(N2{B(C6F5)2(C6F4B(C6F5)3})] (L = ø, N2 or THF). These compounds feature only one N-B linkage of the covalent type, as a result of intramolecular boron-to-boron C6F5 transfer. Complex trans-[W(THF)(Et2PCH2CH2PEt2)2(N2{B(C6F5)2C6F4B(C6F5)3})] (5) was shown to split H2, leading to a seven-coordinate complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)2}2C6F4)] (7). Interestingly, hydride storage at the metal triggers backward C6F5 transfer. This reverts the bis(boron) moiety to its bis(borane) state, now doubly binding the distal N, with structural parameters and DFT computations pointing to dative N→B bonding. By comparison with an N2 complex [W(H)2(Et2PCH2CH2PEt2)2(N2{B(C6F5)3}] (10) differing only in the Lewis acid (LA), namely B(C6F5)3, coordinated to the distal N, we demonstrate that two-fold LA coordination imparts strong N2 activation up to the diazene-diide (N22-) state. To the best of our knowledge, this is the first example of a neutral LA coordination that induces reduction of N2.

4.
Chem Commun (Camb) ; 58(59): 8214-8217, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35790123

RESUMEN

The grafting of an iridium-aluminium precursor onto silica followed by thermal treatment under H2 yields small (<2 nm), narrowly distributed nanoparticles used as catalysts for methane H/D exchange. This Ir-Al/SiO2 catalyst demonstrated enhanced catalytic performances in comparison with the monometallic Ir/SiO2 analogue (TOFs of 339 h-1versus 117 h-1 respectively), highlighting the promoting effect of aluminium. TON up to 900 is obtained after 9 hours, without evidence of catalyst deactivation, and identical performances are achieved after air exposure, underlining the good robustness of both Ir-Al/SiO2 and Ir/SiO2 catalytic materials.

5.
Inorg Chem ; 61(15): 5715-5730, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35073475

RESUMEN

We report an original alkane elimination approach, entailing the protonolysis of triisobutylaluminum by the acidic hydrides from Cp*IrH4. This strategy allows access to a series of well-defined tri- and tetranuclear iridium aluminum polyhydride clusters, depending on the stoichiometry: [Cp*IrH3Al(iBu)2]2 (1), [Cp*IrH2Al(iBu)]2 (2), [(Cp*IrH3)2Al(iBu)] (3), and [(Cp*IrH3)3Al] (4). Contrary to most transition-metal aluminohydride complexes, which can be considered as [AlHx+3]x- aluminates and LnM+ moieties, the situation here is reversed: These complexes have original structures that are best described as [Cp*IrHx]n- iridate units surrounding cationic Al(III) fragments. This is corroborated by reactivity studies, which show that the hydrides are always retained at the iridium sites and that the [Cp*IrH3]- moieties are labile and can be transmetalated to yield potassium ([KIrCp*H3], 8) or silver (([AgIrCp*H3]n, 10) derivatives of potential synthetic interest. DFT calculations show that the bonding situation can vary in these systems, from 3-center 2-electron hydride-bridged Lewis adducts of the form Ir-H⇀Al to direct polarized metal-metal interaction from donation of d-electrons of Ir to the Al metal, and both types of interactions take place to some extent in each of these clusters.

6.
J Am Chem Soc ; 143(12): 4844-4856, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33735575

RESUMEN

The iridium tetrahydride complex Cp*IrH4 reacts with a range of isobutylaluminum derivatives of general formula Al(iBu)x(OAr)3-x (x = 1, 2) to give the unusual iridium aluminum species [Cp*IrH3Al(iBu)(OAr)] (1) via a reductive elimination route. The Lewis acidity of the Al atom in complex 1 is confirmed by the coordination of pyridine, leading to the adduct [Cp*IrH3Al(iBu)(OAr)(Py)] (2). Spectroscopic, crystallographic, and computational data support the description of these heterobimetallic complexes 1 and 2 as featuring strongly polarized Al(III)δ+-Ir(III)δ- interactions. Reactivity studies demonstrate that the binding of a Lewis base to Al does not quench the reactivity of the Ir-Al motif and that both species 1 and 2 promote the cooperative reductive cleavage of a range of heteroallenes. Specifically, complex 2 promotes the decarbonylation of CO2 and AdNCO, leading to CO (trapped as Cp*IrH2(CO)) and the alkylaluminum oxo ([(iBu)(OAr)Al(Py)]2(µ-O) (3)) and ureate ({Al(OAr)(iBu)[κ2-(N,O)AdNC(O)NHAd]} (4)) species, respectively. The bridged amidinate species Cp*IrH2(µ-CyNC(H)NCy)Al(iBu)(OAr) (5) is formed in the reaction of 2 with dicyclohexylcarbodiimine. Mechanistic investigations via DFT support cooperative heterobimetallic bond activation processes.

7.
J Am Chem Soc ; 142(45): 19023-19028, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33124796

RESUMEN

Redox noninnocent ligands enhance the reactivity of the metal they complex, a strategy used by metalloenzymes and in catalysis. Herein, we report a series of copper complexes with the same ligand framework, but with a pendant nitrogen group that spans five different redox states between nitro and amine. Of particular interest is the synthesis of a unprecedented copper(I)-arylhydroxylamine complex. While hydroxylamines typically disproportionate or decompose in the presence of transition metal ions, the reactivity of this metastable species is arrested by the presence of an intramolecular hydrogen bond. Two-electron oxidation yields a copper(II)-(arylnitrosyl radical) complex that can dissociate to a copper(I) species with uncoordinated arylnitroso. This combination of ligand redox noninnocence and hemilability provides opportunities in catalysis for two-electron chemistry via a one-electron copper(I/II) shuttle, as exemplified with an aerobic alcohol oxidation.


Asunto(s)
Aminas/química , Complejos de Coordinación/química , Nitrógeno/química , Alcoholes/química , Cobre/química , Teoría Funcional de la Densidad , Hidroxilaminas/química , Ligandos , Conformación Molecular , Oxidación-Reducción
8.
Dalton Trans ; 47(31): 10429-10433, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29995054

RESUMEN

The reaction of a bifunctional hydroxy N-heterocyclic carbene (NHC-OH) ligand with alkyl-aluminum(iii) derivatives appears to be dependent on the precursor used. The expected alkoxy-NHC metallated product is indeed obtained with Al(iBu)3. In contrast, the sterically hindered [Al(iBu)(OAr)2] (OAr = 2,6-di-tert-butyl-4-methylphenoxy) displays reactivity at the carbene and affords an imidazolium-aluminate zwitterion. The non-innocence of the Al-NHC motif is further highlighted by the heterolytic cleavage of the phenol O-H bond across the Al-CNHC bond from Al(O-NHC)X2 derivatives (X = iBu, OAr).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA