Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126528

RESUMEN

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Asunto(s)
Endófitos , Pruebas de Sensibilidad Microbiana , Algas Marinas , Endófitos/aislamiento & purificación , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/clasificación , Algas Marinas/microbiología , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Antiinfecciosos/farmacología , Antiinfecciosos/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antifúngicos/farmacología , Antifúngicos/aislamiento & purificación , Hongos/efectos de los fármacos , Hongos/aislamiento & purificación , Hongos/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Ulva/microbiología , Caulerpa/microbiología , Bacterias Grampositivas/efectos de los fármacos
2.
Food Res Int ; 187: 114420, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763670

RESUMEN

Vitamins are responsible for providing biological properties to the human body; however, their instability under certain environmental conditions limits their utilization in the food industry. The objective was to conduct a systematic review on the use of biopolymers and lipid bases in microencapsulation processes, assessing their impact on the stability, controlled release, and viability of fortified foods with microencapsulated vitamins. The literature search was conducted between the years 2013-2023, gathering information from databases such as Scopus, PubMed, Web of Science and publishers including Taylor & Francis, Elsevier, Springer and MDPI; a total of 49 articles were compiled The results were classified according to the microencapsulation method, considering the following information: core, coating material, solvent, formulation, process conditions, particle size, efficiency, yield, bioavailability, bioaccessibility, in vitro release, correlation coefficient and references. It has been evidenced that gums are the most frequently employed coatings in the protection of vitamins (14.04%), followed by alginate (10.53%), modified chitosan (9.65%), whey protein (8.77%), lipid bases (8.77%), chitosan (7.89%), modified starch (7.89%), starch (7.02%), gelatin (6.14%), maltodextrin (5.26%), zein (3.51%), pectin (2.63%) and other materials (7.89%). The factors influencing the release of vitamins include pH, modification of the coating material and crosslinking agents; additionally, it was determined that the most fitting mathematical model for release values is Weibull, followed by Zero Order, Higuchi and Korsmeyer-Peppas; finally, foods commonly fortified with microencapsulated vitamins were described, with yogurt, bakery products and gummy candies being notable examples.


Asunto(s)
Composición de Medicamentos , Alimentos Fortificados , Vitaminas , Vitaminas/análisis , Quitosano/química , Disponibilidad Biológica , Humanos , Biopolímeros/química , Alginatos/química , Proteína de Suero de Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA