Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Cell Death Discov ; 10(1): 276, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862471

Early metastatic disease development is one characteristic that defines triple-negative breast cancer (TNBC) as the most aggressive breast cancer (BC) subtype. Numerous studies have identified long non-coding RNAs (lncRNA) as critical players in regulating tumor progression and metastasis formation. Here, we show that MALAT1, a long non-coding RNA known to promote various features of BC malignancy, such as migration and neo angiogenesis, regulates TNBC cell response to hypoxia. By profiling MALAT1-associated transcripts, we discovered that lncRNA MALAT1 interacts with the mRNA encoding WTAP protein, previously reported as a component of the N6-methyladenosine (m6A) modification writer complex. In hypoxic conditions, MALAT1 positively regulates WTAP protein expression, which influences the response to hypoxia by favoring the transcription of the master regulators HIF1α and HIF1ß. Furthermore, WTAP stimulates BC cell migratory ability and the expression of N-Cadherin and Vimentin, hallmarks of epithelial-to-mesenchymal transition (EMT). In conclusion, this study highlights the functional axis comprising MALAT1 and WTAP as a novel prognostic marker of TNBC progression and as a potential target for the development of therapeutic approaches for TNBC treatment.

2.
Antioxidants (Basel) ; 13(5)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38790657

Cancer cells exhibit high levels of oxidative stress and consequently require a high amount of cysteine for glutathione synthesis. Solute Carrier Family 7 Member 11 (SLC7A11), or xCT, mediates the cellular uptake of cystine in exchange for intracellular glutamate; imported extracellular cystine is reduced to cysteine in the cytosol through a NADPH-consuming reduction reaction. SLC7A11/xCT expression is under the control of stress-inducing conditions and of several transcription factors, such as NRF2 and ATF4. Formyl-peptide receptor 2 (FPR2) belongs to the FPR family, which transduces chemotactic signals mediating either inflammatory or anti-inflammatory responses according to the nature of its ligands and/or FPR2 binding with other FPR isoforms. The repertoire of FPR2 agonists with anti-inflammatory activities comprises WKYMVm peptide and Annexin A1 (ANXA1), and the downstream effects of the intracellular signaling cascades triggered by FPR2 include NADPH oxidase (NOX)-dependent generation of reactive oxygen species. Herein, we demonstrate that stimulation of CaLu-6 cells with either WKYMVm or ANXA1: (i) induces the redox-regulated activation of SLC7A11/xCT; (ii) promotes the synthesis of glutathione; (iii) prevents lipid peroxidation; and (iv) favors NRF2 nuclear translocation and activation. In conclusion, our overall results demonstrate that FPR2 agonists and NOX modulate SLC7A11/xCT expression and activity, thereby identifying a novel regulative pathway of the cystine/glutamate antiport that represents a new potential therapeutical target for the treatment of human cancers.

3.
Biomedicines ; 12(5)2024 May 17.
Article En | MEDLINE | ID: mdl-38791074

Inherited ichthyoses are a group of clinically and genetically heterogeneous rare disorders of skin keratinization with overlapping phenotypes. The clinical picture and family history are crucial to formulating the diagnostic hypothesis, but only the identification of the genetic defect allows the correct classification. In the attempt to molecularly classify 17 unrelated Italian patients referred with congenital nonsyndromic ichthyosis, we performed massively parallel sequencing of over 50 ichthyosis-related genes. Genetic data of 300 Italian unaffected subjects were also analyzed to evaluate frequencies of putative disease-causing alleles in our population. For all patients, we identified the molecular cause of the disease. Eight patients were affected by autosomal recessive congenital ichthyosis associated with ALOX12B, NIPAL4, and TGM1 mutations. Three patients had biallelic loss-of-function variants in FLG, whereas 6/11 males were affected by X-linked ichthyosis. Among the 24 different disease-causing alleles we identified, 8 carried novel variants, including a synonymous TGM1 variant that resulted in a splicing defect. Moreover, we generated a priority list of the ichthyosis-related genes that showed a significant number of rare and novel variants in our population. In conclusion, our comprehensive molecular analysis resulted in an effective first-tier test for the early classification of ichthyosis patients. It also expands the genetic, mutational, and phenotypic spectra of inherited ichthyosis and provides new insight into the current understanding of etiologies and epidemiology of this group of rare disorders.

4.
Medicina (Kaunas) ; 60(2)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38399542

Background and Objectives. Retinitis pigmentosa (RP) is the most common inherited rod-cone dystrophy (RCD), resulting in nyctalopia, progressive visual field, and visual acuity decay in the late stages. The autosomal dominant form (ADRP) accounts for about 20% of RPs. Among the over 30 genes found to date related to ADRP, RP1 pathogenic variants have been identified in 5-10% of cases. In a cohort of RCD patients from the Palermo province on the island of Sicily, we identified a prevalent nonsense variant in RP1, which was associated with ADRP. The objective of our study was to analyse the clinical and molecular data of this patient cohort and to evaluate the potential presence of a founder effect. Materials and Methods. From 2005 to January 2023, 84 probands originating from Western Sicily (Italy) with a diagnosis of RCD or RP and their relatives underwent deep phenotyping, which was performed in various Italian clinical institutions. Molecular characterisation of patients and familial segregation of pathogenic variants were carried out in different laboratories using Sanger and/or next-generation sequencing (NGS). Results. Among 84 probands with RCD/RP, we found 28 heterozygotes for the RP1 variant c.2219C>G, p.Ser740* ((NM_006269.2)*, which was therefore significantly prevalent in this patient cohort. After a careful interview process, we ascertained that some of these patients shared the same pedigree. Therefore, we were ultimately able to define 20 independent family groups with no traceable consanguinity. Lastly, analysis of clinical data showed, in our patients, that the p.Ser740* nonsense variant was often associated with a late-onset and relatively mild phenotype. Conclusions. The high prevalence of the p.Ser740* variant in ADRP patients from Western Sicily suggests the presence of a founder effect, which has useful implications for the molecular diagnosis of RCD in patients coming from this Italian region. This variant can be primarily searched for in RP-affected subjects displaying compatible modes of transmission and phenotypes, with an advantage in terms of the required costs and time for analysis. Moreover, given its high prevalence, the RP1 p.Ser740* variant could represent a potential candidate for the development of therapeutic strategies based on gene editing or translational read-through therapy for suppression of nonsense variants.


Cone-Rod Dystrophies , Retinitis Pigmentosa , Humans , Cone-Rod Dystrophies/genetics , Sicily/epidemiology , Founder Effect , Eye Proteins , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Phenotype , Pedigree , Mutation , DNA Mutational Analysis , Microtubule-Associated Proteins/genetics
5.
Antioxidants (Basel) ; 13(2)2024 Feb 08.
Article En | MEDLINE | ID: mdl-38397818

Phospholipases (PL) A2 catalyzes the hydrolysis of membrane phospholipids and mostly generates arachidonic acid (AA). The enzyme 5-lipoxygenase (5-LOX) can metabolize AA to obtain inflammatory leukotrienes, whose biosynthesis highly depends on cPLA2 and 5-LOX activities. Formyl Peptide Receptor 2 (FPR2) belongs to a subfamily of class A GPCRs and is considered the most versatile FPRs isoform. Signaling triggered by FPR2 includes the activation of several downstream kinases and NADPH oxidase (NOX)-dependent ROS generation. In a metabolomic analysis we observed a significant increase in AA concentration in FPR2-stimulated lung cancer cell line CaLu-6. We analyzed cPLA2 phosphorylation and observed a time-dependent increase in cPLA2 Ser505 phosphorylation in FPR2-stimulated cells, which was prevented by the MEK inhibitor (PD098059) and the p38MAPK inhibitor (SB203580) and by blocking NOX function. Similarly, we demonstrated that phosphorylation of 5-LOX at Ser271 and Ser663 residues requires FPR2-dependent p38MAPK and ERKs activation. Moreover, we showed that 5-LOX Ser271 phosphorylation depends on a functional NOX expression. Our overall data demonstrate for the first time that FPR2-induced ERK- and p38MAPK-dependent phosphorylation/activation of cPLA2 and 5-LOX requires a functional NADPH oxidase. These findings represent an important step towards future novel therapeutic possibilities aimed at resolving the inflammatory processes underlying many human diseases.

6.
Oncogene ; 42(50): 3670-3683, 2023 Dec.
Article En | MEDLINE | ID: mdl-37891368

KMT2A-rearranged (KMT2A-R) is an aggressive and chemo-refractory acute leukemia which mostly affects children. Transcriptomics-based characterization and chemical interrogation identified kinases as key drivers of survival and drug resistance in KMT2A-R leukemia. In contrast, the contribution and regulation of phosphatases is unknown. In this study we uncover the essential role and underlying mechanisms of SET, the endogenous inhibitor of Ser/Thr phosphatase PP2A, in KMT2A-R-leukemia. Investigation of SET expression in acute myeloid leukemia (AML) samples demonstrated that SET is overexpressed, and elevated expression of SET is correlated with poor prognosis and with the expression of MEIS and HOXA genes in AML patients. Silencing SET specifically abolished the clonogenic ability of KMT2A-R leukemic cells and the transcription of KMT2A targets genes HOXA9 and HOXA10. Subsequent mechanistic investigations showed that SET interacts with both KMT2A wild type and fusion proteins, and it is recruited to the HOXA10 promoter. Pharmacological inhibition of SET by FTY720 disrupted SET-PP2A interaction leading to cell cycle arrest and increased sensitivity to chemotherapy in KMT2A-R-leukemic models. Phospho-proteomic analyses revealed that FTY720 reduced the activity of kinases regulated by PP2A, including ERK1, GSK3ß, AURB and PLK1 and led to suppression of MYC, supporting the hypothesis of a feedback loop among PP2A, AURB, PLK1, MYC, and SET. Our findings illustrate that SET is a novel player in KMT2A-R leukemia and they provide evidence that SET antagonism could serve as a novel strategy to treat this aggressive leukemia.


Fingolimod Hydrochloride , Leukemia, Myeloid, Acute , Child , Humans , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Gene Expression Profiling , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proteomics , Protein Phosphatase 2/drug effects , Protein Phosphatase 2/metabolism
7.
Open Biol ; 13(10): 230336, 2023 Oct.
Article En | MEDLINE | ID: mdl-37875162

The human formyl-peptide receptor 2 (FPR2) is activated by an array of ligands. By phospho-proteomic analysis we proved that FPR2 stimulation induces redox-regulated phosphorylation of many proteins involved in cellular metabolic processes. In this study, we investigated metabolic pathways activated in FPR2-stimulated CaLu-6 cells. The results showed an increased concentration of metabolites involved in glucose metabolism, and an enhanced uptake of glucose mediated by GLUT4, the insulin-regulated member of GLUT family. Accordingly, we observed that FPR2 transactivated IGF-IRß/IRß through a molecular mechanism that requires Nox2 activity. Since cancer cells support their metabolism via glycolysis, we analysed glucose oxidation and proved that FPR2 signalling promoted kinase activity of the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRß/IRß-, PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase activity, thus preventing the entry of pyruvate in the tricarboxylic acid cycle. Consequently, we observed an enhanced FGFR-dependent lactate dehydrogenase (LDH) activity and lactate production in FPR2-stimulated cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation and Nox-dependent HIF-1α stabilization. These results strongly indicate that FPR2-dependent signalling can be explored as a new therapeutic target in treatment of human cancers.


Proteomics , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Glucose/metabolism , Phosphatidylinositol 3-Kinases , Oxidoreductases , Phosphofructokinase-2
8.
Diagnostics (Basel) ; 13(15)2023 Jul 31.
Article En | MEDLINE | ID: mdl-37568915

Pathogenic variants in the PHEX gene cause rare and severe X-linked dominant hypophosphataemia (XLH), a form of heritable hypophosphatemic rickets (HR) characterized by renal phosphate wasting and elevated fibroblast growth factor 23 (FGF23) levels. Burosumab, the approved human monoclonal anti-FGF23 antibody, is the treatment of choice for XLH. The genetic and phenotypic heterogeneity of HR often delays XLH diagnoses, with critical effects on disease course and therapy. We herein report the clinical and genetic features of two Italian female infants with sporadic HR who successfully responded to burosumab. Their diagnoses were based on clinical and laboratory findings and physical examinations. Next-generation sequencing (NGS) of the genes associated with inherited HR and multiple ligation probe amplification (MLPA) analysis of the PHEX and FGF23 genes were performed. While a conventional analysis of the NGS data did not reveal pathogenic or likely pathogenic small nucleotide variants (SNVs) in the known HR-related genes, a quantitative analysis identified two different heterozygous de novo large intragenic deletions in PHEX, and this was confirmed by MLPA. Our molecular data indicated that deletions in the PHEX gene can be the cause of a significant fraction of XLH; hence, their presence should be evaluated in SNV-negative female patients. Our patients successfully responded to burosumab, demonstrating the efficacy of this drug in the treatment of XLH. In conclusion, the execution of a phenotype-oriented genetic test, guided by known types of variants, including the rarest ones, was crucial to reach the definitive diagnoses and ensure our patients of long-term therapy administration.

9.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article En | MEDLINE | ID: mdl-36768405

Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.


NADPH Oxidases , Superoxides , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Oxidative Stress , Oxidation-Reduction , NADPH Oxidase 4/metabolism
11.
Sci Rep ; 12(1): 20815, 2022 12 02.
Article En | MEDLINE | ID: mdl-36460718

Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.


Retinal Diseases , Humans , Molecular Epidemiology , Retrospective Studies , Retinal Diseases/epidemiology , Retinal Diseases/genetics , Retina , Italy/epidemiology , Eye Proteins/genetics , ATP-Binding Cassette Transporters/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins
12.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Article En | MEDLINE | ID: mdl-36139766

Glucose and glutamine play a crucial role in the metabolic reprogramming of cancer cells. Proliferating cells metabolize glucose in the aerobic glycolysis for energy supply, and glucose and glutamine represent the primary sources of carbon atoms for the biosynthesis of nucleotides, amino acids, and lipids. Glutamine is also an important nitrogen donor for the production of nucleotides, amino acids, and nicotinamide. Several membrane receptors strictly control metabolic reprogramming in cancer cells and are considered new potential therapeutic targets. Formyl-peptide receptor 2 (FPR2) belongs to a small family of GPCRs and is implicated in many physiopathological processes. Its stimulation induces, among other things, NADPH oxidase-dependent ROS generation that, in turn, contributes to intracellular signaling. Previously, by phosphoproteomic analysis, we observed that numerous proteins involved in energetic metabolism are uniquely phosphorylated upon FPR2 stimulation. Herein, we investigated the role of FPR2 in cell metabolism, and we observed that the concentrations of several metabolites associated with the pentose phosphate pathway (PPP), tricarboxylic acid cycle, nucleotide synthesis, and glutamine metabolism, were significantly enhanced in FPR2-stimulated cells. In particular, we found that the binding of specific FPR2 agonists: (i) promotes NADPH production; (ii) activates the non-oxidative phase of PPP; (iii) induces the expression of the ASCT2 glutamine transporter; (iv) regulates oxidative phosphorylation; and (v) induces the de novo synthesis of pyrimidine nucleotides, which requires FPR2-dependent ROS generation.

13.
Cell Biochem Funct ; 40(7): 706-717, 2022 Oct.
Article En | MEDLINE | ID: mdl-35981137

The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.


MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Core Binding Factor Alpha 2 Subunit , Humans , Lymphocyte Activation , MicroRNAs/genetics , MicroRNAs/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
14.
Commun Biol ; 5(1): 598, 2022 06 16.
Article En | MEDLINE | ID: mdl-35710947

Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells.


MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , MicroRNAs/genetics , Protein Isoforms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
15.
Sci Rep ; 12(1): 1997, 2022 02 07.
Article En | MEDLINE | ID: mdl-35132093

Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.


Abortion, Spontaneous/genetics , Aneuploidy , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Animals , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, Pair 9/genetics , Female , Humans , Mice , Nuclear Proteins , Pregnancy , Receptors, Notch/genetics , Repressor Proteins , Wnt Proteins/genetics , Cohesins
16.
Diagnostics (Basel) ; 11(10)2021 Oct 15.
Article En | MEDLINE | ID: mdl-34679607

Duchenne/Becker muscular dystrophy (DMD/BMD) is an X-linked neuromuscular disease due to pathogenic sequence variations in the dystrophin (DMD) gene, one of the largest human genes. More than 70% of DMD gene defects result from genomic rearrangements principally leading to large deletions, while the remaining are small nucleotide variants, including nonsense and missense variants, small insertions/deletions or splicing alterations. Considering the large size of the gene and the wide mutational spectrum, the comprehensive molecular diagnosis of DMD/BMD is complex and may require several laboratory methods, thus increasing the time and costs of the analysis. In an attempt to simplify DMD/BMD molecular diagnosis workflow, we tested an NGS method suitable for the detection of all the different types of genomic variations that may affect the DMD gene. Forty previously analyzed patients were enrolled in this study and re-analyzed using the next generation sequencing (NGS)-based single-step procedure. The NGS results were compared with those from multiplex ligation-dependent probe amplification (MLPA)/multiplex PCR and/or Sanger sequencing. Most of the previously identified deleted/duplicated exons and point mutations were confirmed by NGS and 1 more pathogenic point mutation (a nonsense variant) was identified. Our results show that this NGS-based strategy overcomes limitations of traditionally used methods and is easily transferable to routine diagnostic procedures, thereby increasing the diagnostic power of DMD molecular analysis.

17.
Genes (Basel) ; 12(8)2021 07 22.
Article En | MEDLINE | ID: mdl-34440285

Choroideremia (CHM) is a X-linked recessive chorioretinal dystrophy due to deficiency of the CHM gene product, i.e., Rab escort protein isoform 1 (REP1). To date, gene therapy for CHM has shown variable effectiveness, likely because the underlying pathogenic mechanisms as well as genotype-phenotype correlation are not yet fully known. Small nucleotide variants leading to premature termination codons (PTCs) are a major cause of CHM, but about 20% of patients has CHM gene deletions. To improve understanding of the disease mechanisms, we analyzed molecular features of seven deletions involving the CHM gene sequence. We mapped the deletion breakpoints by using polymerase chain reaction, sequencing and array comparative genomic hybridization; to identify rearrangement-promoting DNA sequences, we analyzed genomic architecture surrounding the breakpoint regions. Moreover, in some CHM patients with different mutation types, we measured transcript level of CHM and of CHML, encoding the REP2 isoform. Scattered along the whole CHM gene and in close proximity to the deletion breakpoints we found numerous repeat elements that generate a locus-specific rearrangement hot spot. Unexpectedly, patients with non-PTC variants had increased expression of the aberrant CHM mRNA; CHML expression was higher than normal in a patient lacking CHM and its putative regulatory sequences. This latest evidence suggests that mechanisms regulating CHM and CHML gene expression are worthy of further study, because their full knowledge could be also useful for developing effective therapies for this hitherto untreatable inherited retinal degeneration.


Adaptor Proteins, Signal Transducing/genetics , Choroideremia/genetics , Gene Deletion , Gene Expression Regulation/genetics , Transcription, Genetic , Adult , Aged , Female , Humans , Male , Middle Aged
18.
Cancers (Basel) ; 13(13)2021 Jun 24.
Article En | MEDLINE | ID: mdl-34202482

Next generation RNA sequencing techniques, implemented in the recent years, have allowed us to identify circular RNAs (circRNAs), covalently closed loop structures resulting in RNA molecules that are more stable than linear RNAs. This class of non-coding RNA is emerging to be involved in a variety of cell functions during development, differentiation, and in many diseases, including cancer. Among the described biological activities, circRNAs have been implicated in microRNA (miRNA) sequestration, modulation of protein-protein interactions and regulation of mRNA transcription. In human cancer, circRNAs were implicated in the control of oncogenic activities such as tumor cell proliferation, epithelial-mesenchymal transition, invasion, metastasis and chemoresistance. The most widely described mechanism of action of circRNAs is their ability to act as competing endogenous RNAs (ceRNAs) for miRNAs, lncRNAs and mRNAs, thus impacting along their axis, despite the fact that a variety of additional mechanisms of action are emerging, representing an open and expanding field of study. Furthermore, research is currently focusing on understanding the possible implications of circRNAs in diagnostics, prognosis prediction, effectiveness of therapies and, eventually, therapeutic intervention in human cancer. The purpose of this review is to discuss new knowledge on the mechanisms of circRNA action, beyond ceRNA, their impact on human cancer and to dissect their potential value as biomarkers and therapeutic targets.

19.
Genes (Basel) ; 12(6)2021 06 08.
Article En | MEDLINE | ID: mdl-34201032

To identify host genetic determinants involved in humoral immunity and associated with the risk of developing severe COVID-19, we analyzed 500 SARS-CoV-2 positive subjects from Southern Italy. We examined the coding sequences of 10 common variable immunodeficiency-associated genes obtained by the whole-exome sequencing of 121 hospitalized patients. These 10 genes showed significant enrichment in predicted pathogenic point mutations in severe patients compared with the non-severe ones. Moreover, in the TNFRSF13C gene, the minor allele of the p.His159Tyr variant, which is known to increase NF-kB activation and B-cell production, was significantly more frequent in the 38 severe cases compared to both the 83 non-severe patients and the 375 asymptomatic subjects further genotyped. This finding identified a potential genetic risk factor of severe COVID-19 that not only may serve to unravel the mechanisms underlying the disease severity but, also, may contribute to build the rationale for individualized management based on B-cell therapy.


B-Cell Activation Factor Receptor/genetics , COVID-19/etiology , COVID-19/genetics , Female , Gene Frequency , Humans , Italy , Male , Middle Aged , Polymorphism, Single Nucleotide , Retrospective Studies , Severity of Illness Index
20.
Life (Basel) ; 11(3)2021 Mar 15.
Article En | MEDLINE | ID: mdl-33804219

G protein-coupled receptors (GPCRs) are the most important regulators of cardiac function and are commonly targeted for medical therapeutics. Formyl-Peptide Receptors (FPRs) are members of the GPCR superfamily and play an emerging role in cardiovascular pathologies. FPRs can modulate oxidative stress through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) production whose dysregulation has been observed in different cardiovascular diseases. Therefore, many studies are focused on identifying molecular mechanisms of the regulation of ROS production. FPR1, FPR2 and FPR3 belong to the FPRs family and their stimulation triggers phosphorylation of intracellular signaling molecules and nonsignaling proteins that are required for NADPH oxidase activation. Some FPR agonists trigger inflammatory processes, while other ligands activate proresolving or anti-inflammatory pathways, depending on the nature of the ligands. In general, bacterial and mitochondrial formylated peptides activate a proinflammatory cell response through FPR1, while Annexin A1 and Lipoxin A4 are anti-inflammatory FPR2 ligands. FPR2 can also trigger a proinflammatory pathway and the switch between FPR2-mediated pro- and anti-inflammatory cell responses depends on conformational changes of the receptor upon ligand binding. Here we describe the detrimental or beneficial effects of the main FPR agonists and their potential role as new therapeutic and diagnostic targets in the progression of cardiovascular diseases.

...