RESUMEN
In this study, we have investigated the effect of an antioxidant probiotic pretreatment toward an overdose of diclofenac in rats (100 mg/kg bw). Rats were treated daily with the probiotic Streptococcus salivarius St.sa (109 CFU) during seven successive days and then received a single treatment with diclofenac overdose in distilled water. Liver transaminases (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), histology, glutathione (GSH) and malondialdehyde (MDA) level were investigated. In addition, both antioxidant enzyme activity and its mRNA gene expression were studied to evaluate diclofenac hepatotoxicity. The results indicated that probiotic pretreatment reduced diclofenac-induced hepatotoxicity through enhancement of the studied hepatic markers and regulation of antioxidant enzyme expression and activity. These findings indicate that the probiotic pretreatment protects rat liver against the oxidative stress induced by diclofenac overdose.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Hígado/efectos de los fármacos , Estrés Oxidativo , Probióticos , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Diclofenaco , Femenino , Peroxidación de Lípido , Hígado/patología , Probióticos/uso terapéutico , Ratas , Ratas Wistar , Streptococcus salivariusRESUMEN
It is widely known that ß-glucans and probiotic bacteria are good immunostimulants for fish. In the present work we have evaluated the dietary effect of ß-1,3/1,6-glucan (isolated from Laminarina digitata) and Pdp 11 (Shewanella putrefaciens, probiotic isolated from gilthead seabream skin), single or combined, on growth, humoural (seric level of total IgM antibodies and peroxidase and antiprotease activities) and cellular innate immune response (peroxidase and phagocytic activities of head-kidney leucocytes), as well as the expression of immune-related genes in gilthead seabream (Sparus aurata). Four treatment groups were established: control (non-supplemented diet), Pdp 11 (10(9) cfu g(-1)), ß-1,3/1,6-glucan (0.1%) and ß-1,3/1,6-glucan + Pdp 11 (0.1% and 10(9) cfu g(-1), respectively). Fish were sampled after 1, 2 and 4 weeks of feeding. Interestingly, all supplemented diets produced increments in the seabream growth rates, mainly the Pdp 11-suplemented diet. Overall, Pdp 11 dietary administration resulted in decreased serum IgM levels and peroxidase activity. However, the seric antiprotease activity was increased in fish fed with both supplements together. Furthermore, ß-1,3/1,6-glucan and combined diet increased phagocytic activity after 2 or 4 weeks. At gene level, IL-1ß and INFγ transcripts were always up-regulated in HK but only the interleukin reached significance after 4 weeks in the group fed with ß-glucan. On the contrary, IgM gene expression tended to be down-regulated being significant after 1 week in seabream specimens fed with ß-glucan or ß-glucan plus Pdp 11. These results suggest that ß-1,3/1,6-glucan and Pdp 11 modulate the immune response and stimulates growth of the gilthead seabream, one of the species with the highest rate of production in Mediterranean aquaculture.