RESUMEN
Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5-7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) "Margarita" strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban "Margarita" strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.
RESUMEN
After Rhipicephalus microplus, the most important tick species affecting livestock industry in Cuba belong to the Amblyomma genus. There are few reports of effective vaccine antigens for these species. Recently, vaccination and challenge trials using a peptide from the P0 acidic ribosomal protein of R. microplus ticks (pP0) as antigen have shown an efficacy around 90% against tick species from the Rhipicephalus genus. Given the high degree of sequence conservation among tick species, pP0 could be an antigen of versatile use in anti-tick vaccine formulations. In this paper, seven rabbits were immunized with a chemical conjugate of pP0 to keyhole limpet haemocyanin. Rabbits were challenged with an average of 1,900 Amblyomma mixtum larvae from a Cuban tick strain. The average number of recovered fed larvae and the viability of larvae in the moulting process were significantly lower in vaccinated animals compared with the control group. The overall vaccine efficacy of the P0 peptide antigen is 54% according to the calculated parameters.