Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Microbiol Spectr ; 11(6): e0099323, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37795992

IMPORTANCE: Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.


Haemophilus Infections , Haemophilus influenzae , Humans , Haemophilus influenzae/genetics , Respiratory System , Haemophilus Infections/microbiology , Microscopy
2.
Microbiol Spectr ; 11(3): e0082323, 2023 06 15.
Article En | MEDLINE | ID: mdl-37195232

Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood. Here, we exploited the strength of in vivo-omic analyses to study host-microbe interactions during infection. We used in vivo transcriptome sequencing (RNA-seq) for genome-wide profiling of both host and bacterial gene expression during mouse lung infection. Profiling of murine lung gene expression upon infection showed upregulation of lung inflammatory response and ribosomal organization genes, and downregulation of cell adhesion and cytoskeleton genes. Transcriptomic analysis of bacteria recovered from bronchoalveolar lavage fluid samples from infected mice showed a significant metabolic rewiring during infection, which was highly different from that obtained upon bacterial in vitro growth in an artificial sputum medium suitable for H. influenzae. In vivo RNA-seq revealed upregulation of bacterial de novo purine biosynthesis, genes involved in non-aromatic amino acid biosynthesis, and part of the natural competence machinery. In contrast, the expression of genes involved in fatty acid and cell wall synthesis and lipooligosaccharide decoration was downregulated. Correlations between upregulated gene expression and mutant attenuation in vivo were established, as observed upon purH gene inactivation leading to purine auxotrophy. Likewise, the purine analogs 6-thioguanine and 6-mercaptopurine reduced H. influenzae viability in a dose-dependent manner. These data expand our understanding of H. influenzae requirements during infection. In particular, H. influenzae exploits purine nucleotide synthesis as a fitness determinant, raising the possibility of purine synthesis as an anti-H. influenzae target. IMPORTANCE In vivo-omic strategies offer great opportunities for increased understanding of host-pathogen interplay and for identification of therapeutic targets. Here, using transcriptome sequencing, we profiled host and pathogen gene expression during H. influenzae infection within the murine airways. Lung pro-inflammatory gene expression reprogramming was observed. Moreover, we uncovered bacterial metabolic requirements during infection. In particular, we identified purine synthesis as a key player, highlighting that H. influenzae may face restrictions in purine nucleotide availability within the host airways. Therefore, blocking this biosynthetic process may have therapeutic potential, as supported by the observed inhibitory effect of 6-thioguanine and 6-mercaptopurine on H. influenzae growth. Together, we present key outcomes and challenges for implementing in vivo-omics in bacterial airway pathogenesis. Our findings provide metabolic insights into H. influenzae infection biology, raising the possibility of purine synthesis as an anti-H. influenzae target and of purine analog repurposing as an antimicrobial strategy against this pathogen.


Haemophilus Infections , Haemophilus influenzae , Mice , Humans , Animals , Haemophilus influenzae/genetics , Mercaptopurine/metabolism , Mercaptopurine/therapeutic use , Thioguanine , Lung/pathology , Gene Expression Profiling , Haemophilus Infections/drug therapy , Purine Nucleotides/metabolism , Purine Nucleotides/therapeutic use
3.
Virulence ; 12(1): 1672-1688, 2021 12.
Article En | MEDLINE | ID: mdl-34252004

Chronic obstructive pulmonary disease (COPD) patients undergo infectious exacerbations whose frequency identifies a clinically meaningful phenotype. Mouse models have been mostly used to separately study both COPD and the infectious processes, but a reliable model of the COPD frequent exacerbator phenotype is still lacking. Accordingly, we first established a model of single bacterial exacerbation by nontypeable Haemophilus influenzae (NTHi) infection on mice with emphysema-like lesions. We characterized this single exacerbation model combining both noninvasive in vivo imaging and ex vivo techniques, obtaining longitudinal information about bacterial load and the extent of the developing lesions and host responses. Bacterial load disappeared 48 hours post-infection (hpi). However, lung recovery, measured using tests of pulmonary function and the disappearance of lung inflammation as revealed by micro-computed X-ray tomography, was delayed until 3 weeks post-infection (wpi). Then, to emulate the frequent exacerbator phenotype, we performed two recurrent episodes of NTHi infection on the emphysematous murine lung. Consistent with the amplified infectious insult, bacterial load reduction was now observed 96 hpi, and lung function recovery and disappearance of lesions on anatomical lung images did not happen until 12 wpi. Finally, as a proof of principle of the use of the model, we showed that azithromycin successfully cleared the recurrent infection, confirming this macrolide utility to ameliorate infectious exacerbation. In conclusion, we present a mouse model of recurrent bacterial infection of the emphysematous lung, aimed to facilitate investigating the COPD frequent exacerbator phenotype by providing complementary, dynamic information of both infectious and inflammatory processes.


Disease Models, Animal , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Animals , Disease Progression , Haemophilus Infections , Haemophilus influenzae , Humans , Mice , Pancreatic Elastase , Phenotype , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Emphysema/chemically induced , Pulmonary Emphysema/diagnostic imaging
4.
mBio ; 12(3): e0078921, 2021 06 29.
Article En | MEDLINE | ID: mdl-34154422

Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation. IMPORTANCE Human-adapted bacterial pathogens have evolved specific mechanisms to colonize their host niche. Phase variation is a contingency strategy to allow adaptation to changing conditions, as phase-variable bacterial loci rapidly and reversibly switch their expression. Several NTHi adhesins are phase variable. These adhesins are required for colonization but also immunogenic, in such a way that bacteria with lower adhesin levels are better equipped to survive an immune response, making their contribution to natural infections unclear. We show here that the major NTHi adhesin HMW1A displays allelic variation, which can drive a phase-variable epithelial hyperinvasion phenotype. Over time, hmw1A phase variation lowers adhesin expression, which controls an NTHi lifestyle switch from high epithelial invasiveness to lower invasion and higher biofilm formation. This reversible loss of function aligns with the previously stated notion that epithelial infection is essential for NTHi infection establishment, but once established, persistence favors gene inactivation, in this case facilitating biofilm growth.


Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Genetic Variation , Genome, Bacterial , Haemophilus influenzae/genetics , Haemophilus influenzae/metabolism , Adaptation, Physiological/genetics , Adhesins, Bacterial/classification , Bacterial Adhesion/genetics , Bacterial Adhesion/physiology , Biofilms , Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Humans , Promoter Regions, Genetic
5.
Biomolecules ; 11(4)2021 04 18.
Article En | MEDLINE | ID: mdl-33919637

Galectins bind various pathogens through recognition of distinct carbohydrate structures. In this work, we examined the binding of four human galectins to the Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an O-chain-containing lipopolysaccharide (LPS), whereas NTHi is not capsulated and its LPS, termed lipooligosacccharide (LOS), does not contain O-chain. Binding assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not galectin-1, bind to Kpn and NTHi cells, and confocal microscopy attested binding to bacterial cells in suspension. The three galectins bound to array-printed Kpn LPS. Moreover, analysis of galectin binding to mutant Kpn cells evidenced that the O-chain is the docking point for galectins on wild type Kpn. Galectins-3, -4, and -8 also bound the NTHi LOS. Microarray-assisted comparison of the binding to full-length and truncated LOSs, as well as to wild type and mutant cells, supported LOS involvement in galectin binding to NTHi. However, deletion of the entire LOS oligosaccharide chain actually increased binding to NTHi cells, indicating the availability of other ligands on the bacterial surface, as similarly inferred for Kpn cells devoid of both O-chain and capsule. Altogether, the results illustrate galectins' versatility for recognizing different bacterial structures, and point out the occurrence of so far overlooked galectin ligands on bacterial surfaces.


Galectins/metabolism , Haemophilus influenzae/metabolism , Klebsiella pneumoniae/metabolism , Lipopolysaccharides/metabolism , Binding Sites , Galectins/chemistry , Humans , Lipopolysaccharides/chemistry , Protein Binding
6.
ACS Infect Dis ; 6(3): 406-421, 2020 03 13.
Article En | MEDLINE | ID: mdl-31933358

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammatory responses and impaired airway immunity, which provides an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. Clinical evidence supports that the COPD airways present increased concentrations of glucose, which may facilitate proliferation of pathogenic bacteria able to use glucose as a carbon source. NTHi metabolizes glucose through respiration-assisted fermentation, leading to the excretion of acetate, formate, and succinate. We hypothesized that such specialized glucose catabolism may be a pathoadaptive trait playing a pivotal role in the NTHi airway infection. To find out whether this is true, we engineered and characterized bacterial mutant strains impaired to produce acetate, formate, or succinate by inactivating the ackA, pflA, and frdA genes, respectively. While the inactivation of the pflA and frdA genes only had minimal physiological effects, the inactivation of the ackA gene affected acetate production and led to reduced bacterial growth, production of lactate under low oxygen tension, and bacterial attenuation in vivo. Moreover, bacterially produced acetate was able to stimulate the expression of inflammatory genes by cultured airway epithelial cells. These results back the notion that the COPD lung supports NTHi growth on glucose, enabling production of fermentative end products acting as immunometabolites at the site of infection. Thus, glucose catabolism may contribute not only to NTHi growth but also to bacterially driven airway inflammation. This information has important implications for developing nonantibiotic antimicrobials, given that airway glucose homeostasis modifying drugs could help prevent microbial infections associated with chronic lung disease.


Acetates/metabolism , Glucose/metabolism , Haemophilus influenzae/metabolism , Host-Pathogen Interactions , A549 Cells , Anti-Bacterial Agents , Gene Silencing , Genes, Bacterial , Humans , Inflammation/microbiology , Lung/microbiology , Metabolic Networks and Pathways , Metabolism , Mutation
7.
Biomolecules ; 9(12)2019 12 17.
Article En | MEDLINE | ID: mdl-31861238

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin's effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.


Anti-Bacterial Agents/pharmacology , Haemophilus Infections/drug therapy , Haemophilus influenzae/drug effects , Plant Extracts/pharmacology , Pulmonary Disease, Chronic Obstructive/drug therapy , Quercetin/pharmacology , A549 Cells , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cistus/chemistry , Disease Models, Animal , Female , Haemophilus Infections/microbiology , Humans , Immunomodulation/drug effects , Mice , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Pulmonary Disease, Chronic Obstructive/microbiology , Quercetin/chemistry , Quercetin/isolation & purification , Tumor Cells, Cultured , Zebrafish
8.
Virulence ; 10(1): 315-333, 2019 12.
Article En | MEDLINE | ID: mdl-30973092

Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.


Bacterial Outer Membrane Proteins/metabolism , Haemophilus influenzae/pathogenicity , Heme/metabolism , Host-Pathogen Interactions , Lung/microbiology , Respiratory Tract Infections/microbiology , A549 Cells , Animals , Bacterial Outer Membrane Proteins/genetics , Binding Sites , Computer Simulation , Female , Heme-Binding Proteins/genetics , Heme-Binding Proteins/metabolism , Humans , Mice , Molecular Docking Simulation
9.
Front Immunol ; 10: 458, 2019.
Article En | MEDLINE | ID: mdl-30936871

Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 µm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 µm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.


Alveolar Epithelial Cells/drug effects , Haemophilus Infections/prevention & control , Haemophilus influenzae/drug effects , Pulmonary Surfactants/pharmacology , Alveolar Epithelial Cells/metabolism , Animals , Bacterial Adhesion/drug effects , Endocytosis/drug effects , Enzyme Activation/drug effects , Extracellular Vesicles/physiology , Haemophilus Infections/immunology , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/physiology , Host-Pathogen Interactions/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes , Male , Mice , Neuropeptides/antagonists & inhibitors , Otitis Media/microbiology , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Surfactants/immunology , Rats , Rats, Sprague-Dawley , Receptors, Scavenger/antagonists & inhibitors , Receptors, Scavenger/physiology , Specific Pathogen-Free Organisms , rac1 GTP-Binding Protein/antagonists & inhibitors
10.
Sci Rep ; 8(1): 16292, 2018 11 02.
Article En | MEDLINE | ID: mdl-30389954

Bacterial surfaces are decorated with carbohydrate structures that may serve as ligands for host receptors. Based on their ability to recognize specific sugar epitopes, plant lectins are extensively used for bacteria typing. We previously observed that the galactose-specific agglutinins from Ricinus communis (RCA) and Viscum album (VAA) exhibited differential binding to nontypeable Haemophilus influenzae (NTHi) clinical isolates, their binding being distinctly affected by truncation of the lipooligosaccharide (LOS). Here, we examined their binding to the structurally similar LOS molecules isolated from strains NTHi375 and RdKW20, using microarray binding assays, saturation transfer difference NMR, and molecular dynamics simulations. RCA bound the LOSRdKW20 glycoform displaying terminal Galß(1,4)Glcß, whereas VAA recognized the Galα(1,4)Galß(1,4)Glcß epitope in LOSNTHi375 but not in LOSRdKW20, unveiling a different presentation. Binding assays to whole bacterial cells were consistent with LOSNTHi375 serving as ligand for VAA, and also suggested recognition of the glycoprotein HMW1. Regarding RCA, comparable binding to NTHi375 and RdKW20 cells was observed. Interestingly, an increase in LOSNTHi375 abundance or expression of HMW1 in RdKW20 impaired RCA binding. Overall, the results revealed that, besides the LOS, other carbohydrate structures on the bacterial surface serve as lectin ligands, and highlighted the impact of the specific display of cell surface components on lectin binding.


Antigens, Bacterial/metabolism , Bacterial Typing Techniques/methods , Haemophilus influenzae/immunology , Lipopolysaccharides/metabolism , Plant Lectins/metabolism , Antigens, Bacterial/immunology , Biological Assay/methods , Galactose/metabolism , Haemophilus influenzae/classification , Haemophilus influenzae/metabolism , Lipopolysaccharides/immunology , Microarray Analysis/methods , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular/methods , Plant Lectins/immunology
11.
mBio ; 9(5)2018 09 25.
Article En | MEDLINE | ID: mdl-30254117

Tracking bacterial evolution during chronic infection provides insights into how host selection pressures shape bacterial genomes. The human-restricted opportunistic pathogen nontypeable Haemophilus influenzae (NTHi) infects the lower airways of patients suffering chronic obstructive pulmonary disease (COPD) and contributes to disease progression. To identify bacterial genetic variation associated with bacterial adaptation to the COPD lung, we sequenced the genomes of 92 isolates collected from the sputum of 13 COPD patients over 1 to 9 years. Individuals were colonized by distinct clonal types (CTs) over time, but the same CT was often reisolated at a later time or found in different patients. Although genomes from the same CT were nearly identical, intra-CT variation due to mutation and recombination occurred. Recurrent mutations in several genes were likely involved in COPD lung adaptation. Notably, nearly a third of CTs were polymorphic for null alleles of ompP1 (also called fadL), which encodes a bifunctional membrane protein that both binds the human carcinoembryonic antigen-related cell adhesion molecule 1 (hCEACAM1) receptor and imports long-chain fatty acids (LCFAs). Our computational studies provide plausible three-dimensional models for FadL's interaction with hCEACAM1 and LCFA binding. We show that recurrent fadL mutations are likely a case of antagonistic pleiotropy, since loss of FadL reduces NTHi's ability to infect epithelia but also increases its resistance to bactericidal LCFAs enriched within the COPD lung. Supporting this interpretation, truncated fadL alleles are common in publicly available NTHi genomes isolated from the lower airway tract but rare in others. These results shed light on molecular mechanisms of bacterial pathoadaptation and guide future research toward developing novel COPD therapeutics.IMPORTANCE Nontypeable Haemophilus influenzae is an important pathogen in patients with chronic obstructive pulmonary disease (COPD). To elucidate the bacterial pathways undergoing in vivo evolutionary adaptation, we compared bacterial genomes collected over time from 13 COPD patients and identified recurrent genetic changes arising in independent bacterial lineages colonizing different patients. Besides finding changes in phase-variable genes, we found recurrent loss-of-function mutations in the ompP1 (fadL) gene. We show that loss of OmpP1/FadL function reduces this bacterium's ability to infect cells via the hCEACAM1 epithelial receptor but also increases its resistance to bactericidal fatty acids enriched within the COPD lung, suggesting a case of antagonistic pleiotropy that restricts ΔfadL strains' niche. These results show how H. influenzae adapts to host-generated inflammatory mediators in the COPD airways.


Adaptation, Biological , Bacterial Outer Membrane Proteins/metabolism , Fatty Acid Transport Proteins/metabolism , Haemophilus Infections/microbiology , Haemophilus influenzae/genetics , Pneumonia, Bacterial/microbiology , Pulmonary Disease, Chronic Obstructive/microbiology , Aged , Aged, 80 and over , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Computational Biology , Fatty Acid Transport Proteins/chemistry , Fatty Acid Transport Proteins/genetics , Genetic Variation , Genome, Bacterial , Haemophilus influenzae/classification , Humans , Longitudinal Studies , Middle Aged , Molecular Docking Simulation , Mutation , Recombination, Genetic , Sequence Analysis, DNA , Sputum/microbiology , Whole Genome Sequencing
12.
Sci Rep ; 8(1): 6872, 2018 05 02.
Article En | MEDLINE | ID: mdl-29720703

Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.


Bacterial Outer Membrane Proteins/metabolism , Haemophilus Infections/metabolism , Haemophilus influenzae/pathogenicity , Lipoproteins/metabolism , Phospholipid Transfer Proteins/metabolism , Respiratory Mucosa/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Fatty Acids/metabolism , Female , Haemophilus Infections/microbiology , Humans , Mice , Respiratory Mucosa/microbiology
13.
Methods Enzymol ; 598: 37-70, 2018.
Article En | MEDLINE | ID: mdl-29306443

Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment.


Lectins/immunology , Microarray Analysis/methods , Polysaccharides, Bacterial/immunology , Quartz Crystal Microbalance Techniques/methods , Receptors, Immunologic/immunology , Host Microbial Interactions/immunology , Kinetics , Klebsiella pneumoniae/chemistry , Klebsiella pneumoniae/immunology , Lectins/chemistry , Ligands , Microarray Analysis/instrumentation , Polysaccharides, Bacterial/chemistry , Quartz Crystal Microbalance Techniques/instrumentation , Receptors, Immunologic/chemistry
14.
Sci Rep ; 7(1): 12860, 2017 10 16.
Article En | MEDLINE | ID: mdl-29038519

The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens ß defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.


Anti-Bacterial Agents/therapeutic use , Haemophilus Infections/drug therapy , Haemophilus Infections/microbiology , Haemophilus influenzae/physiology , Immunologic Factors/therapeutic use , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , Resveratrol/therapeutic use , A549 Cells , Administration, Intranasal , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Drug Resistance, Bacterial/drug effects , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Epithelial Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Haemophilus Infections/pathology , Haemophilus influenzae/drug effects , Haemophilus influenzae/growth & development , Humans , Immunologic Factors/pharmacology , Interleukin-8/metabolism , Mice , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Tract Infections/pathology , Resveratrol/administration & dosage , Resveratrol/pharmacology , Zebrafish , beta-Defensins/metabolism
15.
Article En | MEDLINE | ID: mdl-28676846

Antibacterial treatment with cotrimoxazol (TxS), a combination of trimethoprim and sulfamethoxazole, generates resistance by, among others, acquisition of thymidine auxotrophy associated with mutations in the thymidylate synthase gene thyA, which can modify the biology of infection. The opportunistic pathogen non-typeable Haemophilus influenzae (NTHi) is frequently encountered in the lower airways of chronic obstructive pulmonary disease (COPD) patients, and associated with acute exacerbation of COPD symptoms. Increasing resistance of NTHi to TxS limits its suitability as initial antibacterial against COPD exacerbation, although its relationship with thymidine auxotrophy is unknown. In this study, the analysis of 2,542 NTHi isolates recovered at Bellvitge University Hospital (Spain) in the period 2010-2014 revealed 119 strains forming slow-growing colonies on the thymidine low concentration medium Mueller Hinton Fastidious, including one strain isolated from a COPD patient undergoing TxS therapy that was a reversible thymidine auxotroph. To assess the impact of thymidine auxotrophy in the NTHi-host interplay during respiratory infection, thyA mutants were generated in both the clinical isolate NTHi375 and the reference strain RdKW20. Inactivation of the thyA gene increased TxS resistance, but also promoted morphological changes consistent with elongation and impaired bacterial division, which altered H. influenzae self-aggregation, phosphorylcholine level, C3b deposition, and airway epithelial infection patterns. Availability of external thymidine contributed to overcome such auxotrophy and TxS effect, potentially facilitated by the nucleoside transporter nupC. Although, thyA inactivation resulted in bacterial attenuation in a lung infection mouse model, it also rendered a lower clearance upon a TxS challenge in vivo. Thus, our results show that thymidine auxotrophy modulates both the NTHi host airway interplay and antibiotic resistance, which should be considered at the clinical setting for the consequences of TxS administration.


Drug Resistance, Microbial/drug effects , Haemophilus Infections/drug therapy , Haemophilus influenzae/growth & development , Haemophilus influenzae/metabolism , Thymidylate Synthase/genetics , A549 Cells , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cell Line, Tumor , DNA, Bacterial , Female , Genes, Bacterial/genetics , Haemophilus Infections/microbiology , Haemophilus Infections/pathology , Haemophilus influenzae/cytology , Haemophilus influenzae/genetics , Host-Pathogen Interactions , Humans , Interleukin-8/metabolism , Lung/microbiology , Lung/pathology , Mice , Microscopy, Electron, Transmission , Mutation , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/pathology , Spain , Sulfamethoxazole/pharmacology , Thymidine/metabolism , Trimethoprim/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Virulence/genetics
16.
Anal Chem ; 88(11): 5950-7, 2016 06 07.
Article En | MEDLINE | ID: mdl-27176788

Recognition of bacterial surface epitopes by host receptors plays an important role in the infectious process and is intimately associated with bacterial virulence. Delineation of bacteria-host interactions commonly relies on the detection of binding events between purified bacteria- and host-target molecules. In this work, we describe a combined microarray and quartz crystal microbalance (QCM) approach for the analysis of carbohydrate-mediated interactions directly on the bacterial surface, thus preserving the native environment of the bacterial targets. Nontypeable Haemophilus influenzae (NTHi) was selected as a model pathogenic species not displaying a polysaccharide capsule or O-antigen-containing lipopolysaccharide, a trait commonly found in several important respiratory pathogens. Here, we demonstrate the usefulness of NTHi microarrays for exploring the presence of carbohydrate structures on the bacterial surface. Furthermore, the microarray approach is shown to be efficient for detecting strain-selective binding of three innate immune lectins, namely, surfactant protein D, human galectin-8, and Siglec-14, to different NTHi clinical isolates. In parallel, QCM bacteria-chips were developed for the analysis of lectin-binding kinetics and affinity. This novel QCM approach involves capture of NTHi on lectin-derivatized chips followed by formaldehyde fixation, rendering the bacteria an integrated part of the sensor chip, and subsequent binding assays with label-free lectins. The binding parameters obtained for selected NTHi-lectin pairs provide further insights into the interactions occurring at the bacterial surface.


Haemophilus influenzae/chemistry , Lectins/analysis , Microarray Analysis , Polysaccharides/chemistry , Quartz Crystal Microbalance Techniques
17.
Antimicrob Agents Chemother ; 59(12): 7581-92, 2015 Dec.
Article En | MEDLINE | ID: mdl-26416856

Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.


Anti-Bacterial Agents/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Haemophilus Infections/drug therapy , Phosphodiesterase 4 Inhibitors/pharmacology , Rolipram/pharmacology , Sirtuin 1/genetics , Stilbenes/pharmacology , Animals , Cell Line, Tumor , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Drug Therapy, Combination , Enzyme Activation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Epithelial Cells/pathology , Gene Expression Profiling , Gene Expression Regulation , Genome, Human , Haemophilus Infections/genetics , Haemophilus Infections/microbiology , Haemophilus Infections/pathology , Haemophilus influenzae/drug effects , Haemophilus influenzae/physiology , Host-Pathogen Interactions , Humans , Lung/drug effects , Lung/microbiology , Lung/pathology , Mice , Respiratory Mucosa/drug effects , Respiratory Mucosa/microbiology , Respiratory Mucosa/pathology , Resveratrol , Signal Transduction , Sirtuin 1/metabolism
18.
PLoS One ; 10(4): e0123154, 2015.
Article En | MEDLINE | ID: mdl-25894755

Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.


Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Haemophilus Infections/microbiology , Haemophilus influenzae/physiology , Host-Pathogen Interactions , Respiratory System/microbiology , Respiratory Tract Infections/microbiology , Serine Endopeptidases/metabolism , Amino Acid Sequence , Animals , Antigens, CD/metabolism , Bacterial Adhesion , Bacterial Load , Bacterial Outer Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Bacterial Typing Techniques , Biofilms/growth & development , Cell Adhesion Molecules/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Female , Genes, Bacterial , Glycosylation , Haemophilus Infections/pathology , Haemophilus influenzae/genetics , Humans , Integrin alpha5/metabolism , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/pathology , Mice , Molecular Sequence Data , Mutation/genetics , Respiratory System/pathology , Respiratory Tract Infections/pathology , Serine Endopeptidases/chemistry
19.
Antimicrob Agents Chemother ; 59(5): 2700-12, 2015 May.
Article En | MEDLINE | ID: mdl-25712355

Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that is an important cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). COPD is an inflammatory disease of the airways, and exacerbations are acute inflammatory events superimposed on this background of chronic inflammation. Azithromycin (AZM) is a macrolide antibiotic with antibacterial and anti-inflammatory properties and a clinically proven potential for AECOPD prevention and management. Relationships between AZM efficacy and resistance by NTHI and between bactericidal and immunomodulatory effects on NTHI respiratory infection have not been addressed. In this study, we employed two pathogenic NTHI strains with different AZM susceptibilities (NTHI 375 [AZM susceptible] and NTHI 353 [AZM resistant]) to evaluate the prophylactic and therapeutic effects of AZM on the NTHI-host interplay. At the cellular level, AZM was bactericidal toward intracellular NTHI inside alveolar and bronchial epithelia and alveolar macrophages, and it enhanced NTHI phagocytosis by the latter cell type. These effects correlated with the strain MIC of AZM and the antibiotic dose. Additionally, the effect of AZM on NTHI infection was assessed in a mouse model of pulmonary infection. AZM showed both preventive and therapeutic efficacies by lowering NTHI 375 bacterial counts in lungs and bronchoalveolar lavage fluid (BALF) and by reducing histopathological inflammatory lesions in the upper and lower airways of mice. Conversely, AZM did not reduce bacterial loads in animals infected with NTHI 353, in which case a milder anti-inflammatory effect was also observed. Together, the results of this work link the bactericidal and anti-inflammatory effects of AZM and frame the efficacy of this antibiotic against NTHI respiratory infection.


Azithromycin/therapeutic use , Haemophilus Infections/drug therapy , Haemophilus influenzae/drug effects , Haemophilus influenzae/pathogenicity , Respiratory Tract Infections/drug therapy , Animals , Cell Line , Epithelial Cells/virology , Female , Humans , Macrophages, Alveolar/virology , Mice
20.
PLoS One ; 9(5): e97020, 2014.
Article En | MEDLINE | ID: mdl-24824990

Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of persistent infection by NTHi.


Haemophilus influenzae/cytology , Haemophilus influenzae/genetics , Phenotype , Pulmonary Disease, Chronic Obstructive/microbiology , Adult , Alveolar Epithelial Cells/microbiology , Analysis of Variance , Animals , Antimicrobial Cationic Peptides/pharmacology , Bacterial Adhesion/physiology , Base Sequence , Biofilms/growth & development , DNA Primers/genetics , Electrophoresis, Gel, Pulsed-Field , Genotype , Haemophilus influenzae/drug effects , Humans , Mice , Molecular Sequence Data , Sequence Analysis, DNA
...