Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Biochemistry ; 60(40): 2987-3006, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605636

RESUMEN

During the life cycle of enteric bacterium Escherichia coli, it encounters a wide spectrum of pH changes. The asymmetric dimer of the cAMP receptor protein, CRP, plays a key role in regulating the expressions of genes and the survival of E. coli. To elucidate the pH effects on the mechanism of signal transmission, we present a combination of results derived from ITC, crystallography, and computation. CRP responds to a pH change by inducing a differential effect on the affinity for the binding events to the two cAMP molecules, ensuing in a reversible conversion between positive and negative cooperativity at high and low pH, respectively. The structures of four crystals at pH ranging from 7.8 to 6.5 show that CRP responds by inducing a differential effect on the structures of the two subunits, particularly in the DNA binding domain. Employing the COREX/BEST algorithm, computational analysis shows the change in the stability of residues at each pH. The change in residue stability alters the connectivity between residues including those in cAMP and DNA binding sites. Consequently, the differential impact on the topology of the connectivity surface among residues in adjacent subunits is the main reason for differential change in affinity; that is, the pH-induced differential change in residue stability is the biothermodynamic basis for the change in allosteric behavior. Furthermore, the structural asymmetry of this homodimer amplifies the differential impact of any perturbations. Hence, these results demonstrate that the combination of these approaches can provide insights into the underlying mechanism of an apparent complex allostery signal and transmission in CRP.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Receptores de AMP Cíclico/metabolismo , Algoritmos , Regulación Alostérica , Sitios de Unión , AMP Cíclico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Escherichia coli/química , Concentración de Iones de Hidrógeno , Modelos Químicos , Unión Proteica , Conformación Proteica , Dominios Proteicos , Receptores de AMP Cíclico/química , Termodinámica
2.
Nucleic Acids Res ; 49(12): 6958-6970, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34161576

RESUMEN

Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Factor 3 Procariótico de Iniciación/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Factor 1 Procariótico de Iniciación/metabolismo , Factor 2 Procariótico de Iniciación/metabolismo , Factor 3 Procariótico de Iniciación/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN de Transferencia de Metionina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo
3.
Biochemistry ; 59(4): 460-470, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31885251

RESUMEN

The theory for allostery has evolved to a modern energy landscape ensemble theory, the major feature of which is the existence of multiple microstates in equilibrium. The properties of microstates are not well defined due to their transient nature. Characterization of apo protein microstates is important because the specific complex of the ligand-bound microstate defines the biological function. The information needed to link biological function and structure is a quantitative correlation of the energy landscapes between the apo and holo protein states. We employed the Escherichia coli cAMP receptor protein (CRP) system to test the features embedded in the ensemble theory because multiple crystalline apo and holo structures are available. Small angle X-ray scattering data eliminated one of the three apo states but not the other two. We defined the underlying energy landscape differences among the apo microstates by employing the computation algorithm COREX/BEST. The same connectivity patterns among residues in apo CRP are retained upon binding of cAMP. The microstates of apo CRP differ from one another by minor structural perturbations, resulting in changes in the energy landscapes of the various domains of CRP. Using the differences in energy landscapes among these apo states, we computed the cAMP binding energetics that were compared with solution biophysical results. Only one of the three apo microstates yielded data consistent with the solution data. The relative magnitude of changes in energy landscapes embedded in various apo microstates apparently defines the ultimate outcome of the cooperativity of binding.


Asunto(s)
Regulación Alostérica/fisiología , Proteína Receptora de AMP Cíclico/química , Biología Computacional/métodos , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformación Proteica , Termodinámica
4.
J Biol Chem ; 294(42): 15544-15556, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31492755

RESUMEN

The Escherichia coli cAMP receptor protein, CRP, is a homodimeric global transcription activator that employs multiple mechanisms to modulate the expression of hundreds of genes. These mechanisms require different interfacial interactions among CRP, RNA, and DNA of varying sequences. The involvement of such a multiplicity of interfaces requires a tight control to ensure the desired phenotype. CRP-dependent promoters can be grouped into three classes. For decades scientists in the field have been puzzled over the differences in mechanisms between class I and II promoters. Using a new crystal structure, IR spectroscopy, and computational analysis, we defined the energy landscapes of WT and 14 mutated CRPs to determine how a homodimeric protein can distinguish nonpalindromic DNA sequences and facilitate communication between residues located in three different activation regions (AR) in CRP that are ∼30 Šapart. We showed that each mutation imparts differential effects on stability among the subunits and domains in CRP. Consequently, the energetic landscapes of subunits and domains are different, and CRP is asymmetric. Hence, the same mutation can exert different effects on ARs in class I or II promoters. The effect of a mutation is transmitted through a network by long-distance communication not necessarily relying on physical contacts between adjacent residues. The mechanism is simply the sum of the consequences of modulating the synchrony of dynamic motions of residues at a distance, leading to differential effects on ARs in different subunits. The computational analysis is applicable to any system and potentially with predictive capability.


Asunto(s)
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regiones Promotoras Genéticas , Sitios de Unión , Proteína Receptora de AMP Cíclico/química , Proteína Receptora de AMP Cíclico/genética , Dimerización , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
5.
Bioorg Med Chem ; 24(20): 4928-4935, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27543390

RESUMEN

This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of protein structures in docking calculations for hit discovery, the exploration of biochemical pathways and toxicity prediction of drug candidates. We describe the computational engineering work necessary to enable large ensemble docking campaigns on supercomputers. We show examples where ensemble-based docking has significantly increased the number and the diversity of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended beyond hit discovery and toward providing a structural basis for the prediction of metabolism and off-target binding relevant to pre-clinical and clinical trials.


Asunto(s)
Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Preparaciones Farmacéuticas , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo
6.
Biopolymers ; 105(12): 864-72, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27463323

RESUMEN

Interfacial proteins function in unique heterogeneous solvent environments, such as water-oil interfaces. One important example is microbial lipase, which is activated in an oil-water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all-atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed-gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open-gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α-helical, as we previously observed in studies that address water-oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.


Asunto(s)
Proteínas Bacterianas/química , Dimetilsulfóxido/química , Lipasa/química , Pseudomonas aeruginosa/enzimología , Dominios Proteicos
7.
Biochemistry ; 54(48): 7079-88, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26562759

RESUMEN

Protein-protein interactions are recognized as a fundamental phenomenon that is intimately associated with biological functions and thus are ideal targets for developing modulators for regulating biological functions. A challenge is to identify a site that is situated away from but functionally connected to the protein-protein interface. We employed bone morphogenetic proteins (BMPs) and their receptors as a model system to develop a strategy for identifying such a network of communication. Accordingly, using computational analyses with the COREX/BEST algorithm, we uncovered an overall pattern connecting various regions of BMPR-1B ectodomain, including the four conserved residues in the protein-protein interface. In preparation for testing the long-range effects of mutations of distal residues for future studies, we examined the extent of measurable perturbation of the four conserved residues by determination of the conformation and relative affinities of these BMPR-1B mutants for ligands BMP-2, -6, and -7 and GDF-5. Results suggest no significant structural changes in the receptor but do suggest that the four residues play different roles in defining ligand affinity and both intra- and intermolecular interactions play a role in defining ligand affinity. Thus, these results established two primary but necessary goals: (1) the baseline knowledge of perturbation of conserved interfacial residues for future reference and (2) the ability of the computational approach to identify the distal residues connecting to the interfacial residues. The data presented here provide the foundation for future experiments to identify the effects of distal residues that affect the specificity and affinity of BMP recognition. Protein-protein interactions are integral reactions in essentially all biological activities such as gene regulation and age-related development. Often, diseases are consequences of the alteration of these intermacromolecular interactions, which are thus recognized as a legitimate target for developing modulators for regulating biological functions. One approach is to design ligands that bind to the protein-protein interface. Another is to identify an allosteric site, an advantage of which is bypassing the potential challenge in competing for high-affinity interfacial interactions or a specific interface in a superassembly of multiple macromolecules. However, a challenge of this approach is identifying a site that is situated away from but functionally connected to the protein-protein interface.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/química , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Mapas de Interacción de Proteínas , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Proteínas Morfogenéticas Óseas/química , Línea Celular , Secuencia Conservada , Factor 5 de Diferenciación de Crecimiento/química , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica
8.
Am J Trop Med Hyg ; 87(1): 153-61, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22764307

RESUMEN

Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co(2+), Mn(2+), and Zn(2+) restored pyrazinamidase activity, only Co(2+) enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu(2+), Fe(2+), Fe(3+), and Mg(2+) did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn(2+). However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn.


Asunto(s)
Amidohidrolasas/metabolismo , Metales/farmacología , Mycobacterium tuberculosis/enzimología , Amidohidrolasas/química , Dicroismo Circular , Cinética , Modelos Moleculares , Espectrofotometría Atómica
9.
Bioinformation ; 6(9): 335-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21814390

RESUMEN

The pncA gene codes the pyrazinamidase of Mycobacterium tuberculosis, which converts pyrazinamide to ammonia and pyrazinoic-acid, the active antituberculous compound. Pyrazinamidase mutations are associated to pyrazinamide-resistant phenotype, however how mutations affect the structure of the pyrazinamidase, and how structural changes affect the enzymatic function and the level of pyrazinamide-resistance is unknown. The structures of mutated pyrazinamidases from twelve Mycobacterium tuberculosis strains and the pyrazinamide-susceptible H37Rv reference strain were modelled using homology modelling and single amino acid replacement. Physical-chemical and structural parameters of each pyrazinamidase were calculated. These parameters were: The change of electrical charge of the mutated amino acid, the change of volume of the mutated amino acid, the change of a special amino acid, the distance of the mutated amino acid to the active site, the distance of the mutated amino acid to the metal-coordination site, and the orientation of the side-chain of the mutated amino acid. The variability of the enzymatic activity of the recombinant pyrazinamidases, and the microbiological susceptibility to pyrazinamide determined by BACTEC 460TB, were modelled in multiple linear regressions. Physical-chemical and structural parameters of the mutated pyrazinamidases were tested as predictors. Structural and physical-chemical variations of the pyrazinamidase explained 75% of the variability of the enzymatic activity, 87% of the variability of the kinetic constant and 40% of the variability of the pyrazinamide-resistance level. Based on computer models of mutated pyrazinamidases, the structural parameters explained a high variability of the enzymatic function, and to a lesser extent the resistance level.

10.
Bioinformation ; 6(7): 271-4, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21738328

RESUMEN

Cysticercosis is a public health problem in several developing countries. The oncosphere protein TSOL18 is the most immunogenic and protective antigen ever reported against porcine cysticercosis, although no specific epitope has been identified to account for these properties. Recent evidence suggests that protection might be associated with conformational epitopes. Linear epitopes from TSOL18 were computationally predicted and evaluated for immunogenicity and protection against porcine cysticercosis. A synthetic peptide was designed based on predicted linear B cell and T cell epitopes that are exposed on the surface of the theoretically modeled structure of TSOL18. Three surface epitopes from TSOL18 were predicted as immunogenic. A peptide comprising a linear arrangement of these epitopes was chemically synthesized. The capacity of the synthetic peptide to protect pigs against an oral challenge with Taenia solium proglottids was tested in a vaccine trial. The synthetic peptide was able to produce IgG antibodies in pigs and was associated to a reduction of the number of cysts, although was not able to provide complete protection, defined as the complete absence of cysts in necropsy. This study demonstrated that B cell and T cell predicted epitopes from TSOL18 were not able to completely protect pigs against an oral challenge with Taenia solium proglottids. Therefore, other linear epitopes or eventually conformational epitopes may be responsible for the protection conferred by TSOL18.

11.
BMC Med Inform Decis Mak ; 8: 11, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18366687

RESUMEN

BACKGROUND: Low-cost handheld computers (PDA) potentially represent an efficient tool for collecting sensitive data in surveys. The goal of this study is to evaluate the quality of sexual behavior data collected with handheld computers in comparison with paper-based questionnaires. METHODS: A PDA-based program for data collection was developed using Open-Source tools. In two cross-sectional studies, we compared data concerning sexual behavior collected with paper forms to data collected with PDA-based forms in Ancon (Lima). RESULTS: The first study enrolled 200 participants (18-29 years). General agreement between data collected with paper format and handheld computers was 86%. Categorical variables agreement was between 70.5% and 98.5% (Kappa: 0.43-0.86) while numeric variables agreement was between 57.1% and 79.8% (Spearman: 0.76-0.95). Agreement and correlation were higher in those who had completed at least high school than those with less education. The second study enrolled 198 participants. Rates of responses to sensitive questions were similar between both kinds of questionnaires. However, the number of inconsistencies (p = 0.0001) and missing values (p = 0.001) were significantly higher in paper questionnaires. CONCLUSION: This study showed the value of the use of handheld computers for collecting sensitive data, since a high level of agreement between paper and PDA responses was reached. In addition, a lower number of inconsistencies and missing values were found with the PDA-based system. This study has demonstrated that it is feasible to develop a low-cost application for handheld computers, and that PDAs are feasible alternatives for collecting field data in a developing country.


Asunto(s)
Computadoras de Mano , Recolección de Datos/métodos , Adolescente , Adulto , Estudios Transversales , Presentación de Datos , Femenino , Control de Formularios y Registros , Humanos , Masculino , Registros Médicos , Sistemas de Registros Médicos Computarizados , Perú , Programas Informáticos , Encuestas y Cuestionarios , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...