Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(10): 2085-2093.e6, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38670094

RESUMEN

Proper chromosome segregation in meiosis I relies on the formation of connections between homologous chromosomes. Crossovers between homologs provide a connection that allows them to attach correctly to the meiosis I spindle. Tension is transmitted across the crossover when the partners attach to microtubules from opposing poles of the spindle. Tension stabilizes microtubule attachments that will pull the partners toward opposite poles at anaphase. Paradoxically, in many organisms, non-crossover partners segregate correctly. The mechanism by which non-crossover partners become bioriented on the meiotic spindle is unknown. Both crossover and non-crossover partners pair their centromeres early in meiosis (prophase). In budding yeast, centromere pairing is correlated with subsequent correct segregation of the partners. The mechanism by which centromere pairing, in prophase, promotes later correct attachment of the partners to the metaphase spindle is unknown. We used live cell imaging to track the biorientation process of non-crossover chromosomes. We find that centromere pairing allows the establishment of connections between the partners that allows their later interdependent attachment to the meiotic spindle using tension-sensing biorientation machinery. Because all chromosome pairs experience centromere pairing, our findings suggest that crossover chromosomes also utilize this mechanism to achieve maximal segregation fidelity.


Asunto(s)
Centrómero , Segregación Cromosómica , Meiosis , Saccharomyces cerevisiae , Centrómero/metabolismo , Segregación Cromosómica/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/metabolismo , Huso Acromático/fisiología , Emparejamiento Cromosómico , Cromosomas Fúngicos/genética , Microtúbulos/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(19): 9417-9422, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31019073

RESUMEN

Faithful chromosome segregation during meiosis I depends upon the formation of connections between homologous chromosomes. Crossovers between homologs connect the partners, allowing them to attach to the meiotic spindle as a unit, such that they migrate away from one another at anaphase I. Homologous partners also become connected by pairing of their centromeres in meiotic prophase. This centromere pairing can promote proper segregation at anaphase I of partners that have failed to become joined by a crossover. Centromere pairing is mediated by synaptonemal complex (SC) proteins that persist at the centromere when the SC disassembles. Here, using mouse spermatocyte and yeast model systems, we tested the role of shugoshin in promoting meiotic centromere pairing by protecting centromeric synaptonemal components from disassembly. The results show that shugoshin protects the centromeric SC in meiotic prophase and, in anaphase, promotes the proper segregation of partner chromosomes that are not linked by a crossover.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Segregación Cromosómica/fisiología , Profase/fisiología , Espermatocitos/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Centrómero/genética , Masculino , Ratones , Ratones Noqueados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espermatocitos/citología , Huso Acromático/genética , Huso Acromático/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
3.
PLoS Genet ; 14(8): e1007513, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30091974

RESUMEN

In meiosis I, homologous chromosomes segregate away from each other-the first of two rounds of chromosome segregation that allow the formation of haploid gametes. In prophase I, homologous partners become joined along their length by the synaptonemal complex (SC) and crossovers form between the homologs to generate links called chiasmata. The chiasmata allow the homologs to act as a single unit, called a bivalent, as the chromosomes attach to the microtubules that will ultimately pull them away from each other at anaphase I. Recent studies, in several organisms, have shown that when the SC disassembles at the end of prophase, residual SC proteins remain at the homologous centromeres providing an additional link between the homologs. In budding yeast, this centromere pairing is correlated with improved segregation of the paired partners in anaphase. However, the causal relationship of prophase centromere pairing and subsequent disjunction in anaphase has been difficult to demonstrate as has been the relationship between SC assembly and the assembly of the centromere pairing apparatus. Here, a series of in-frame deletion mutants of the SC component Zip1 were used to address these questions. The identification of a separation-of-function allele that disrupts centromere pairing, but not SC assembly, has made it possible to demonstrate that centromere pairing and SC assembly have mechanistically distinct features and that the centromere pairing function of Zip1 drives disjunction of the paired partners in anaphase I.


Asunto(s)
Centrómero/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Alelos , Anafase/genética , Emparejamiento Cromosómico , Segregación Cromosómica , Meiosis , Proteínas Nucleares/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Complejo Sinaptonémico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...