Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 6(23)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34710062

RESUMEN

Bacterial cancer therapy (BCT) shows great promise for treatment of solid tumors, yet basic mechanisms of bacterial-induced tumor suppression remain undefined. Attenuated strains of Salmonella enterica serovar Typhimurium (STm) have commonly been used in mouse models of BCT in xenograft and orthotopic transplant cancer models. We aimed to better understand the tumor epithelium-targeted mechanisms of BCT by using autochthonous mouse models of intestinal cancer and tumor organoid cultures to assess the effectiveness and consequences of oral treatment with aromatase A-deficient STm (STmΔaroA). STmΔaroA delivered by oral gavage significantly reduced tumor burden and tumor load in both a colitis-associated colorectal cancer (CAC) model and in a spontaneous Apcmin/+ intestinal cancer model. STmΔaroA colonization of tumors caused alterations in transcription of mRNAs associated with tumor stemness, epithelial-mesenchymal transition, and cell cycle. Metabolomic analysis of tumors demonstrated alteration in the metabolic environment of STmΔaroA-treated tumors, suggesting that STmΔaroA imposes metabolic competition on the tumor. Use of tumor organoid cultures in vitro recapitulated effects seen on tumor stemness, mesenchymal markers, and altered metabolome. Furthermore, live STmΔaroA was required, demonstrating active mechanisms including metabolite usage. We have demonstrated that oral BCT is efficacious in autochthonous intestinal cancer models, that BCT imposes metabolic competition, and that BCT has direct effects on the tumor epithelium affecting tumor stem cells.


Asunto(s)
Terapia Biológica , Neoplasias Colorrectales/terapia , Salmonella typhimurium/fisiología , Administración Oral , Animales , Aromatasa/metabolismo , Modelos Animales de Enfermedad , Epitelio , Ratones , Organoides , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética
2.
Angew Chem Int Ed Engl ; 60(25): 13937-13944, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33783110

RESUMEN

Protein complexes are defined by the three-dimensional structure of participating binding partners. Knowledge about these structures can facilitate the design of peptidomimetics which have been applied for example, as inhibitors of protein-protein interactions (PPIs). Even though ß-sheets participate widely in PPIs, they have only rarely served as the basis for peptidomimetic PPI inhibitors, in particular when addressing intracellular targets. Here, we present the structure-based design of ß-sheet mimetics targeting the intracellular protein ß-catenin, a central component of the Wnt signaling pathway. Based on a protein binding partner of ß-catenin, a macrocyclic peptide was designed and its crystal structure in complex with ß-catenin obtained. Using this structure, we designed a library of bicyclic ß-sheet mimetics employing a late-stage diversification strategy. Several mimetics were identified that compete with transcription factor binding to ß-catenin and inhibit Wnt signaling in cells. The presented design strategy can support the development of inhibitors for other ß-sheet-mediated PPIs.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Péptidos/farmacología , beta Catenina/antagonistas & inhibidores , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Modelos Moleculares , Péptidos/química , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...