Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
PLoS One ; 19(5): e0302149, 2024.
Article En | MEDLINE | ID: mdl-38691526

Future colonists on Mars will need to produce fresh food locally to acquire key nutrients lost in food dehydration, the primary technique for sending food to space. In this study we aimed to test the viability and prospect of applying an intercropping system as a method for soil-based food production in Martian colonies. This novel approach to Martian agriculture adds valuable insight into how we can optimise resource use and enhance colony self-sustainability, since Martian colonies will operate under very limited space, energy, and Earth supplies. A likely early Martian agricultural setting was simulated using small pots, a controlled greenhouse environment, and species compliant with space mission requirements. Pea (Pisum sativum), carrot (Daucus carota) and tomato (Solanum lycopersicum) were grown in three soil types ("MMS-1" Mars regolith simulant, potting soil and sand), planted either mixed (intercropping) or separate (monocropping). Rhizobia bacteria (Rhizobium leguminosarum) were added as the pea symbiont for Nitrogen-fixing. Plant performance was measured as above-ground biomass (g), yield (g), harvest index (%), and Nitrogen/Phosphorus/Potassium content in yield (g/kg). The overall intercropping system performance was calculated as total relative yield (RYT). Intercropping had clear effects on plant performance in Mars regolith, being beneficial for tomato but mostly detrimental for pea and carrot, ultimately giving an overall yield disadvantage compared to monocropping (RYT = 0.93). This effect likely resulted from the observed absence of Rhizobia nodulation in Mars regolith, negating Nitrogen-fixation and preventing intercropped plants from leveraging their complementarity. Adverse regolith conditions-high pH, elevated compactness and nutrient deficiencies-presumably restricted Rhizobia survival/nodulation. In sand, where more favourable soil conditions promoted effective nodulation, intercropping significantly outperformed monocropping (RYT = 1.32). Given this, we suggest that with simple regolith improvements, enhancing conditions for nodulation, intercropping shows promise as a method for optimising food production in Martian colonies. Specific regolith ameliorations are proposed for future research.


Mars , Soil , Solanum lycopersicum , Solanum lycopersicum/growth & development , Soil/chemistry , Daucus carota/growth & development , Agriculture/methods , Pisum sativum/growth & development , Biomass , Nitrogen Fixation , Nitrogen/metabolism , Space Flight
2.
Ann Bot ; 133(2): 365-378, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38099505

BACKGROUND AND AIMS: Plants can propagate generatively and vegetatively. The type of propagation and the resulting propagule can influence the growth of the plants, such as plant architectural development and pattern of biomass allocation. Potato is a species that can reproduce through both types of propagation: through true botanical seeds and seed tubers. The consequences of propagule type on the plant architectural development and biomass partitioning in potatoes are not well known. We quantified architectural differences between plants grown from these two types of propagules from the same genotype, explicitly analysing branching dynamics above and below ground, and related these differences to biomass allocation patterns. METHODS: A greenhouse experiment was conducted, using potato plants of the same genotype but grown from two types of propagules: true seeds and seed tubers from a plant grown from true seed (seedling tuber). Architectural traits and biomass allocation to different organs were quantified at four developmental stages. Differences between true-seed-grown and seedling-tuber-grown plants were compared at the whole-plant level and at the level of individual stems and branches, including their number, size and location on the plant. KEY RESULTS: A more branched and compact architecture was produced in true-seed-grown plants compared with seedling-tuber-grown plants. The architectural differences between plants grown from true seeds and seedling tubers appeared gradually and were attributed mainly to the divergent temporal-spatial distribution of lateral branches above and below ground on the main axis. The continual production of branches in true-seed-grown plants indicated their indeterminate growth habit, which was also reflected in a slower shift of biomass allocation from above- to below-ground branches, whereas the opposite trend was found in seedling-tuber-grown plants. CONCLUSIONS: In true-seed-grown plants, lateral branching was stronger and determined whole-plant architecture and plant function with regard to light interception and biomass production, compared with seedling-tuber-grown plants. This different role of branching indicates that a difference in preference between clonal and sexual reproduction might exist. The divergent branching behaviours in true-seed-grown and seedling-tuber-grown plants might be regulated by the different intensity of apical dominance, which suggests that the control of branching can depend on the propagule type.


Solanum tuberosum , Solanum tuberosum/genetics , Plant Tubers , Phenotype , Genotype , Plant Development , Seedlings
3.
Plant Cell Environ ; 46(2): 405-421, 2023 02.
Article En | MEDLINE | ID: mdl-36358006

Plants have evolved to adapt to their neighbours through plastic trait responses. In intercrop systems, plant growth occurs at different spatial and temporal dimensions, creating a competitive light environment where aboveground plasticity may support complementarity in light-use efficiency, realizing yield gains per unit area compared with monoculture systems. Physiological and architectural plasticity including the consequences for light-use efficiency and yield in a maize-soybean solar corridor intercrop system was compared, empirically, with the standard monoculture systems of the Midwest, USA. The impact of reducing maize plant density on yield was investigated in the following year. Intercropped maize favoured physiological plasticity over architectural plasticity, which maintained harvest index (HI) but reduced light interception efficiency (ɛi ) and conversion efficiency (ɛc ). Intercropped soybean invested in both plasticity responses, which maintained ɛi , but HI and ɛc decreased. Reducing maize plant density within the solar corridor rows did not improve yields under monoculture and intercrop systems. Overall, the intercrop decreased land-use efficiency by 9%-19% and uncoordinated investment in aboveground plasticity by each crop under high maize plant density does not support complementarity in light-use efficiency. Nonetheless, the mechanistic understanding gained from this study may improve crop cultivars and intercrop designs for the Midwest to increase yield.


Glycine max , Zea mays , Glycine max/physiology , Zea mays/physiology , Plant Leaves , Crops, Agricultural
4.
AoB Plants ; 14(6): plac053, 2022 Nov.
Article En | MEDLINE | ID: mdl-36545299

Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN) important for radiation-use efficiency versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a 10-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N deficiency (N0), low N supply (N1) and high N supply (N2). We analysed data from years 8 and 10 of this experiment for two common hybrids. Under N deficiency, maize plants maintained LA and decreased SLN during vegetative stages, while both LA and SLN decreased comparably during reproductive stages. Canopy SLA (specific leaf area, cm2 g-1) decreased sharply during vegetative stages and slightly during reproductive stages, mainly because senesced leaves in the lower canopy had a higher SLA. In the vegetative stage, maize maintained LA at low N by maintaining leaf biomass (albeit hence having N content/mass) and slightly increasing SLA. These responses to N deficiency were stronger in maize hybrid XY335 than in ZD958. We conclude that the main strategy of maize to cope with low N is to maintain LA, mainly by increasing SLA throughout the plant but only during the vegetative growth phase.

5.
Front Plant Sci ; 12: 734167, 2021.
Article En | MEDLINE | ID: mdl-34868116

Intercropping is both a well-established and yet novel agricultural practice, depending on one's perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., "trait-based" breeding) or quantitative genetics-driven (i.e., "product-based" breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.

6.
J Exp Bot ; 72(17): 5942-5960, 2021 09 02.
Article En | MEDLINE | ID: mdl-34268575

Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.


Photosynthesis , Ribulose-Bisphosphate Carboxylase , Crops, Agricultural/metabolism , Electron Transport , Ribulose-Bisphosphate Carboxylase/metabolism , Zea mays/metabolism
7.
New Phytol ; 231(3): 1171-1182, 2021 08.
Article En | MEDLINE | ID: mdl-33930184

Recent studies show that the variation in root functional traits can be explained by a two-dimensional trait framework, containing a 'collaboration' axis in addition to the classical fast-slow 'conservation' axis. This collaboration axis spans from thin and highly branched roots that employ a 'do-it-yourself' strategy to thick and sparsely branched roots that 'outsource' nutrient uptake to symbiotic arbuscular mycorrhizal fungi (AMF). Here, we explore the functionality of this collaboration axis by quantifying how interactions with AMF change the impact of root traits on plant performance. To this end, we developed a novel functional-structural plant (FSP) modelling approach that simulates plants competing for light and nutrients in the presence or absence of AMF. Our simulation results support the notion that in the absence of AMF, plants rely on thin, highly branched roots for their nutrient uptake. The presence of AMF, however, promotes thick, unbranched roots as an alternative strategy for uptake of immobile phosphorus, but not for mobile nitrogen. This provides further support for a root trait framework that accommodates for the interactive effect of roots and AMF. Our modelling study offers unique opportunities to incorporate soil microbial interactions into root functionality as it integrates consequences of belowground trait expression.


Mycorrhizae , Nutrients , Phosphorus , Plant Roots , Soil
8.
J Exp Bot ; 72(10): 3630-3646, 2021 05 04.
Article En | MEDLINE | ID: mdl-33608704

Spatial configuration and plant phenotypic plasticity contribute to increased light capture in relay intercropping, but there is little information on whether these factors also increase light capture in simultaneous intercropping. We developed and validated a three-dimensional functional-structural plant model to simulate light capture in maize and soybean sole crops and intercrop scenarios, using species traits observed in sole crops and intercrops. The intercrop maize phenotype had 2% greater light capture than the sole crop phenotype in a pure stand. The soybean intercrop phenotype had 5-10% lower light capture than the sole crop phenotype in a pure stand. The intercrop configuration increased the light capture of maize by 29% and reduced the light capture of soybean by 42%, compared with the light capture expected from sole crops. However, intercrop configuration only marginally affected total light capture by the intercrop system (+1%). Testing of individual soybean plant traits revealed that plasticity in leaf dimensions was the main reason for differences in light capture by soybean in simulated sole crops and intercrops. The results of this study illustrate a major shift of light capture from shorter species (soybean) to the taller component (maize) in a simultaneous strip intercrop. Plastic plant traits modulate this overall effect, but only marginally.


Glycine max , Zea mays , Agriculture , Crops, Agricultural , Phenotype , Plant Leaves
9.
Plant Cell Environ ; 44(1): 102-113, 2021 01.
Article En | MEDLINE | ID: mdl-32490539

In vegetation stands, plants receive red to far-red ratio (R:FR) signals of varying strength from all directions. However, plant responses to variations in R:FR reflected from below have been largely ignored despite their potential consequences for plant performance. Using a heterogeneous rose canopy, which consists of bent shoots down in the canopy and vertically growing upright shoots, we quantified upward far-red reflection by bent shoots and its consequences for upright shoot architecture. With a three-dimensional plant model, we assessed consequences of responses to R:FR from below for plant photosynthesis. Bent shoots reflected substantially more far-red than red light, causing reduced R:FR in light reflected upwards. Leaf inclination angles increased in upright shoots which received low R:FR reflected from below. The increased leaf angle led to an increase in simulated plant photosynthesis only when this low R:FR was reflected off their own bent shoots and not when it reflected off neighbour bent shoots. We conclude that plant response to R:FR from below is an under-explored phenomenon which may have contrasting consequences for plant performance depending on the type of vegetation or crop system. The responses are beneficial for performance only when R:FR is reflected by lower foliage of the same plants.


Light , Plant Development/radiation effects , Plants/radiation effects , Models, Biological , Photosynthesis/drug effects , Plant Shoots/growth & development , Rosa/growth & development , Rosa/radiation effects
11.
Ann Bot ; 126(4): 713-728, 2020 09 14.
Article En | MEDLINE | ID: mdl-32249296

BACKGROUND AND AIMS: Improved modelling of carbon assimilation and plant growth to low soil moisture requires evaluation of underlying mechanisms in the soil, roots, and shoots. The feedback between plants and their local environment throughout the whole spectrum soil-root-shoot-environment is crucial to accurately describe and evaluate the impact of environmental changes on plant development. This study presents a 3D functional structural plant model, in which shoot and root growth are driven by radiative transfer, photosynthesis, and soil hydrodynamics through different parameterisation schemes relating soil water deficit and carbon assimilation. The new coupled model is used to evaluate the impact of soil moisture availability on plant productivity for two different groups of flowering plants under different spatial configurations. METHODS: In order to address different aspects of plant development due to limited soil water availability, a 3D FSP model including root, shoot, and soil was constructed by linking three different well-stablished models of airborne plant, root architecture, and reactive transport in the soil. Different parameterisation schemes were used in order to integrate photosynthetic rate with root water uptake within the coupled model. The behaviour of the model was assessed on how the growth of two different types of plants, i.e. monocot and dicot, is impacted by soil water deficit under different competitive conditions: isolated (no competition), intra, and interspecific competition. KEY RESULTS: The model proved to be capable of simulating carbon assimilation and plant development under different growing settings including isolated monocots and dicots, intra, and interspecific competition. The model predicted that (1) soil water availability has a larger impact on photosynthesis than on carbon allocation; (2) soil water deficit has an impact on root and shoot biomass production by up to 90 % for monocots and 50 % for dicots; and (3) the improved dicot biomass production in interspecific competition was highly related to root depth and plant transpiration. CONCLUSIONS: An integrated model of 3D shoot architecture and biomass development with a 3D root system representation, including light limitation and water uptake considering soil hydraulics, was presented. Plant-plant competition and regulation on stomatal conductance to drought were able to be predicted by the model. In the cases evaluated here, water limitation impacted plant growth almost 10 times more than the light environment.


Soil , Water , Biomass , Droughts , Plant Leaves , Plant Roots , Plant Shoots
12.
Ann Bot ; 126(4): 587-599, 2020 09 14.
Article En | MEDLINE | ID: mdl-31549140

BACKGROUND AND AIMS: The success of using bent shoots in cut-rose (Rosa hybrida) production to improve flower shoot quality has been attributed to bent shoots capturing more light and thus providing more assimilates for flower shoot growth. We aimed at quantifying this contribution of photosynthesis by bent shoots to flower shoot growth. METHODS: Rose plants were grown with four upright flower shoots and with no, one or three bent shoots per plant. Plant architectural traits, leaf photosynthetic parameters and organ dry weight were measured. A functional-structural plant (FSP) model of rose was used to calculate photosynthesis of upright shoots and bent shoots separately, taking into account the heterogeneous canopy structure of these plants. KEY RESULTS: Bent shoots contributed to 43-53 % of total assimilated CO2 by the plant. Plant photosynthesis increased by 73 and 117 % in plants with, respectively, one and three bent shoots compared with plants without bent shoots. Upright shoot photosynthesis was not significantly affected by the presence of bent shoots. However, upright shoot dry weight increased by 35 and 59 % in plants with, respectively, one and three bent shoots compared with plants without bent shoots. The increased upright shoot dry weight was entirely due to the contribution of extra photosynthesis by bent shoots, as this was the only source that could induce differences in upright shoot growth apart from their own photosynthesis. At least 47-51 % of the photosynthesis by bent shoots was translocated to upright shoots to support their biomass increase. CONCLUSIONS: Based on model simulations, we conclude that the positive effect of shoot bending on flower shoot growth and quality in cut-rose production system can almost entirely be attributed to assimilate supply from bent shoots. FSP modelling is a useful tool to quantify the contributions of photosynthesis by different parts of heterogeneous canopies.


Photosynthesis , Rosa , Biomass , Flowers , Plant Leaves , Plant Shoots
13.
Ann Bot ; 126(4): 635-646, 2020 09 14.
Article En | MEDLINE | ID: mdl-31793625

BACKGROUND AND AIMS: Shading by an overhead canopy (i.e. canopy shading) entails simultaneous changes in both photosynthetically active radiation (PAR) and red to far-red ratio (R:FR). As plant responses to PAR (e.g. changes in leaf photosynthesis) are different from responses to R:FR (e.g. changes in plant architecture), and these responses occur at both organ and plant levels, understanding plant photosynthesis responses to canopy shading needs separate analysis of responses to reductions in PAR and R:FR at different levels. METHODS: In a glasshouse experiment we subjected plants of woody perennial rose (Rosa hybrida) to different light treatments, and so separately quantified the effects of reductions in PAR and R:FR on leaf photosynthetic traits and plant architectural traits. Using a functional-structural plant model, we separately quantified the effects of responses in these traits on plant photosynthesis, and evaluated the relative importance of changes of individual traits for plant photosynthesis under mild and heavy shading caused by virtual overhead canopies. KEY RESULTS: Model simulations showed that the individual trait responses to canopy shading could have positive and negative effects on plant photosynthesis. Under mild canopy shading, trait responses to reduced R:FR on photosynthesis were generally negative and with a larger magnitude than effects of responses to reduced PAR. Conversely, under heavy canopy shading, the positive effects of trait responses to reduced PAR became dominant. The combined effects of low-R:FR responses and low-PAR responses on plant photosynthesis were not equal to the sum of the separate effects, indicating interactions between individual trait responses. CONCLUSIONS: Our simulation results indicate that under canopy shading, the relative importance of plant responses to PAR and R:FR for plant photosynthesis changes with shade levels. This suggests that the adaptive significance of plant plasticity responses to one shading factor depends on plant responses to the other.


Photosynthesis , Rosa , Light , Plant Leaves
14.
PLoS Comput Biol ; 15(8): e1007253, 2019 08.
Article En | MEDLINE | ID: mdl-31433817

Phenotypic plasticity is a vital strategy for plants to deal with changing conditions by inducing phenotypes favourable in different environments. Understanding how natural selection acts on variation in phenotypic plasticity in plants is therefore a central question in ecology, but is often ignored in modelling studies. Here we present a new modelling approach that allows for the analysis of selection for variation in phenotypic plasticity as a response strategy. We assess selection for shade avoidance strategies of Arabidopsis thaliana in response to future neighbour shading signalled through a decrease in red:far-red (R:FR) ratio. For this, we used a spatially explicit 3D virtual plant model that simulates individual Arabidopsis plants competing for light in different planting densities. Plant structure and growth were determined by the organ-specific interactions with the light environment created by the vegetation structure itself. Shade avoidance plastic responses were defined by a plastic response curve relating petiole elongation and lamina growth to R:FR perceived locally. Different plasticity strategies were represented by different shapes of the response curve that expressed different levels of R:FR sensitivity. Our analyses show that the shape of the selected shade avoidance strategy varies with planting density. At higher planting densities, more sensitive response curves are selected for than at lower densities. In addition, the balance between lamina and petiole responses influences the sensitivity of the response curves selected for. Combining computational virtual plant modelling with a game theoretical analysis represents a new step towards analysing how natural selection could have acted upon variation in shade avoidance as a response strategy, which can be linked to genetic variation and underlying physiological processes.


Adaptation, Physiological/radiation effects , Models, Biological , Plants/radiation effects , Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Biological Evolution , Biomass , Computational Biology , Computer Simulation , Game Theory , Light , Plant Development/genetics , Plant Development/radiation effects , Plants/genetics , Selection, Genetic , User-Computer Interface
15.
Funct Ecol ; 33(1): 129-138, 2019 Jan.
Article En | MEDLINE | ID: mdl-31007332

Plants defend themselves against diverse communities of herbivorous insects. This requires an investment of limited resources, for which plants also compete with neighbours. The consequences of an investment in defence are determined by the metabolic costs of defence as well as indirect or ecological costs through interactions with other organisms. These ecological costs have a potentially strong impact on the evolution of defensive traits, but have proven to be difficult to quantify.We aimed to quantify the relative impact of the direct and indirect or ecological costs and benefits of an investment in plant defence in relation to herbivory and intergenotypic competition for light. Additionally, we evaluated how the benefits of plant defence balance its costs in the context of herbivory and intergenotypic competition.To this end, we utilised a functional-structural plant (FSP) model of Brassica nigra that simulates plant growth and development, morphogenesis, herbivory and plant defence. In the model, a simulated investment in defences affected plant growth by competing with other plant organs for resources and affected the level and distribution of herbivore damage.Our results show that the ecological costs of intergenotypic competition for light are highly detrimental to the fitness of defended plants, as it amplifies the size difference between defended and undefended plants. This leads to herbivore damage counteracting the effects of intergenotypic competition under the assumption that herbivore damage scales with plant size. Additionally, we show that plant defence relies on reducing herbivore damage rather than the dispersion of herbivore damage, which is only beneficial under high levels of herbivore damage.We conclude that the adaptive value of plant defence is highly dependent on ecological interactions and is predominantly determined by the outcome of competition for light. plain language summary is available for this article.

16.
Plant Cell Environ ; 42(3): 1065-1077, 2019 03.
Article En | MEDLINE | ID: mdl-30702750

Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour-detection cues, such as a low ratio of red to far-red (R:FR) radiation, activates a suite of shade-avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth-defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected. To test these hypotheses, we used a 3D functional-structural plant model of Brassica nigra that mechanistically simulates the interactions between plant architecture, herbivory, and the light environment. Our results show that plant-level defence expression is a strong determinant of plant fitness and that leaf-level defence mediation by R:FR can provide a fitness benefit in high densities. However, optimal plant-level defence expression does not decrease monotonically with plant density, indicating that R:FR mediation of defence alone is not enough to optimize defence between densities. Therefore, assessing the ecological significance of R:FR-mediated defence is paramount to better understand the evolution of this physiological linkage and its implications for crop breeding.


Light , Mustard Plant/physiology , Plant Physiological Phenomena/radiation effects , Computer Simulation , Ecology , Herbivory , Mustard Plant/growth & development , Mustard Plant/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects
17.
J Exp Bot ; 70(9): 2381-2388, 2019 04 29.
Article En | MEDLINE | ID: mdl-30165416

Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.g. with regard to nitrogen content and photosynthetic capacity or by size (e.g. shade avoidance). As a result, the resource acquisition in time and space is improved and performance of the community as a whole is increased. Modelling is needed to unravel the primary drivers and subsequent dynamics of complementary growth responses in mixtures. Here, we advocate using functional-structural plant (FSP) modelling to analyse the functioning of plant mixtures. In FSP modelling, crop performance is a result of the behaviour of the individual plants interacting through competitive and complementary resource acquisition. FSP models can integrate the interactions between structural and physiological plant responses to the local resource availability and strength of competition, which drive resource capture and growth of individuals in species mixtures. FSP models have the potential to accelerate mixed-species plant research, and thus support the development of knowledge that is needed to promote the use of mixtures towards sustainably increasing crop yields at acceptable input levels.


Light , Plants/metabolism , Ecosystem , Models, Theoretical , Phenotype
18.
Ann Bot ; 121(5): 1005-1017, 2018 04 18.
Article En | MEDLINE | ID: mdl-29373640

Background and Aims: Within-plant spatial heterogeneity in the production of and demand for assimilates may have major implications for the formation of fruits. Spatial heterogeneity is related to organ age, but also to position on the plant. This study quantifies the variation in local carbohydrate availability for the phytomers in the same cohort using a cotton growth model that captures carbohydrate production in phytomers and carbohydrate movement between phytomers. Methods: Based on field observations, we developed a functional-structural plant model of cotton that simulates production and storage of carbohydrates in individual phytomers and transport of surplus to other phytomers. Simulated total leaf area, total above-ground dry mass, dry mass distribution along the stem, and dry mass allocation fractions to each organ at the plant level were compared with field observations for plants grown at different densities. The distribution of local carbohydrate availability throughout the plant was characterized and a sensitivity analysis was conducted regarding the value of the carbohydrate transport coefficient. Key Results: The model reproduced cotton leaf expansion and dry mass allocation across plant densities adequately. Individual leaf area was underestimated at very high plant densities. Best correspondence with measured plant traits was obtained for a value of the transport coefficient of 0.1 d-1. The simulated translocation of carbohydrates agreed well with results from C-labelling studies. Moreover, simulation results revealed the heterogeneous pattern of local carbohydrate availability over the plant as an emergent model property. Conclusions: This modelling study shows how heterogeneity in local carbohydrate production within the plant structure in combination with limitations in transport result in heterogeneous satisfaction of demand over the plant. This model provides a tool to explore phenomena in cotton that are thought to be determined by local carbohydrate availability, such as branching pattern and fruit abortion in relation to climate and crop management.


Carbohydrate Metabolism , Gossypium/anatomy & histology , Models, Biological , Biological Transport , Biomass , Fruit/anatomy & histology , Fruit/growth & development , Fruit/metabolism , Gossypium/growth & development , Gossypium/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/metabolism
19.
Ann Bot ; 121(5): 1019-1031, 2018 04 18.
Article En | MEDLINE | ID: mdl-29373660

Background and Aims: Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods: To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results: Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions: Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions.


Feeding Behavior , Host-Parasite Interactions , Insecta/physiology , Models, Biological , Mustard Plant/physiology , Plant Diseases/parasitology , Animals , Computer Simulation , Disease Susceptibility , Herbivory , Mustard Plant/anatomy & histology , Mustard Plant/parasitology , Mustard Plant/radiation effects , Plant Diseases/immunology , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Plant Leaves/parasitology , Plant Leaves/physiology
20.
Ann Bot ; 121(5): 863-873, 2018 04 18.
Article En | MEDLINE | ID: mdl-29280992

Background and Aims: Although phenotypic plasticity has been shown to be beneficial for plant competitiveness for light, there is limited knowledge on how variation in these plastic responses plays a role in determining competitiveness. Methods: A combination of detailed plant experiments and functional-structural plant (FSP) modelling was used that captures the complex dynamic feedback between the changing plant phenotype and the within-canopy light environment in time and 3-D space. Leaf angle increase (hyponasty) and changes in petiole elongation rates in response to changes in the ratio between red and far-red light, two important shade avoidance responses in Arabidopsis thaliana growing in dense population stands, were chosen as a case study for plant plasticity. Measuring and implementing these responses into an FSP model allowed simulation of plant phenotype as an emergent property of the underlying growth and response mechanisms. Key Results: Both the experimental and model results showed that substantial differences in competitiveness may arise between genotypes with only marginally different hyponasty or petiole elongation responses, due to the amplification of plant growth differences by small changes in plant phenotype. In addition, this study illustrated that strong competitive responses do not necessarily have to result in a tragedy of the commons; success in competition at the expense of community performance. Conclusions: Together, these findings indicate that selection pressure could probably have played a role in fine-tuning the sensitive shade avoidance responses found in plants. The model approach presented here provides a novel tool to analyse further how natural selection could have acted on the evolution of plastic responses.


Adaptation, Physiological/radiation effects , Arabidopsis/physiology , Arabidopsis/radiation effects , Genotype , Light , Phenotype , Plant Leaves/physiology , Plant Leaves/radiation effects
...