Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Immunol ; 212(7): 1178-1187, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38353642

RESUMEN

The inflammatory response is a key mechanism for the elimination of injurious agents but must be tightly controlled to prevent additional tissue damage and progression to persistent inflammation. C-type lectin receptors expressed mostly by myeloid cells play a crucial role in the regulation of inflammation by recognizing molecular patterns released by injured tissues. We recently showed that the C-type lectin receptor CLEC-1 is able to recognize necrotic cells. However, its role in the acute inflammatory response following tissue damage had not yet been investigated. We show in this study, in a mouse model of liver injury induced by acetaminophen intoxication, that Clec1a deficiency enhances the acute immune response with increased expression of Il1b, Tnfa, and Cxcl2 and higher infiltration of activated neutrophils into the injured organ. Furthermore, we demonstrate that Clec1a deficiency exacerbates tissue damage via CXCL2-dependent neutrophil infiltration. In contrast, we observed that the lack of CLEC-1 limits CCL2 expression and the accumulation, beyond the peak of injury, of monocyte-derived macrophages. Mechanistically, we found that Clec1a-deficient dendritic cells increase the expression of Il1b, Tnfa, and Cxcl2 in response to necrotic cells, but decrease the expression of Ccl2. Interestingly, treatment with an anti-human CLEC-1 antagonist mAb recapitulates the exacerbation of acute immunopathology observed by genetic loss of Clec1a in a preclinical humanized mouse model. To conclude, our results demonstrate that CLEC-1 is a death receptor limiting the acute inflammatory response following injury and represents a therapeutic target to modulate immunity.


Asunto(s)
Inflamación , Neutrófilos , Ratones , Animales , Células Mieloides , Macrófagos , Hígado/metabolismo , Lectinas Tipo C/metabolismo
2.
Sci Adv ; 8(46): eabo7621, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36399563

RESUMEN

Tumors exploit numerous immune checkpoints, including those deployed by myeloid cells to curtail antitumor immunity. Here, we show that the C-type lectin receptor CLEC-1 expressed by myeloid cells senses dead cells killed by programmed necrosis. Moreover, we identified Tripartite Motif Containing 21 (TRIM21) as an endogenous ligand overexpressed in various cancers. We observed that the combination of CLEC-1 blockade with chemotherapy prolonged mouse survival in tumor models. Loss of CLEC-1 reduced the accumulation of immunosuppressive myeloid cells in tumors and invigorated the activation state of dendritic cells (DCs), thereby increasing T cell responses. Mechanistically, we found that the absence of CLEC-1 increased the cross-presentation of dead cell-associated antigens by conventional type-1 DCs. We identified antihuman CLEC-1 antagonist antibodies able to enhance antitumor immunity in CLEC-1 humanized mice. Together, our results demonstrate that CLEC-1 acts as an immune checkpoint in myeloid cells and support CLEC-1 as a novel target for cancer immunotherapy.


Asunto(s)
Reactividad Cruzada , Neoplasias , Ratones , Animales , Presentación de Antígeno , Inmunoterapia , Células Dendríticas , Neoplasias/terapia
3.
J Gen Physiol ; 153(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33410863

RESUMEN

Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.


Asunto(s)
Ventrículos Cardíacos , Proteómica , Animales , Ventrículos Cardíacos/metabolismo , Ratones , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Fosforilación , Serina , Sodio/metabolismo
4.
J Med Chem ; 59(7): 3046-62, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26943260

RESUMEN

The intracellular delivery of nucleic acid molecules is a complex process involving several distinct steps; among these the endosomal escape appeared to be of particular importance for an efficient protein production (or inhibition) into host cells. In the present study, a new series of ionizable vectors, derived from naturally occurring aminoglycoside tobramycin, was prepared using improved synthetic procedures that allow structural variations on the linker and hydrophobic domain levels. Complexes formed between the new ionizable lipids and mRNA, DNA, or siRNA were characterized by cryo-TEM experiments and their transfection potency was evaluated using different cell types. We demonstrated that lead molecule 30, bearing a biodegradable diester linker, formed small complexes with nucleic acids and provided very high transfection efficiency with all nucleic acids and cell types tested. The obtained results suggested that the improved and "universal" delivery properties of 30 resulted from an optimized endosomal escape, through the lipid-mixing mechanism.


Asunto(s)
ADN/administración & dosificación , Endosomas , Lípidos/química , ARN Mensajero/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Transfección/métodos , Animales , Técnicas de Química Sintética , Microscopía por Crioelectrón/métodos , Sistemas de Liberación de Medicamentos/métodos , Endosomas/química , Endosomas/metabolismo , Ácidos Grasos Monoinsaturados/química , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/administración & dosificación , Lípidos/síntesis química , Liposomas/química , Microscopía Electrónica de Transmisión/métodos , Músculo Liso Vascular/citología , Compuestos de Amonio Cuaternario/química , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA