Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562799

RESUMEN

To uncover the intricate, chemotherapy-induced spatiotemporal remodeling of the tumor microenvironment, we conducted integrative spatial and molecular characterization of 97 high-grade serous ovarian cancer (HGSC) samples collected before and after chemotherapy. Using single-cell and spatial analyses, we identify increasingly versatile immune cell states, which form spatiotemporally dynamic microcommunities at the tumor-stroma interface. We demonstrate that chemotherapy triggers spatial redistribution and exhaustion of CD8+ T cells due to prolonged antigen presentation by macrophages, both within interconnected myeloid networks termed "Myelonets" and at the tumor stroma interface. Single-cell and spatial transcriptomics identifies prominent TIGIT-NECTIN2 ligand-receptor interactions induced by chemotherapy. Using a functional patient-derived immuno-oncology platform, we show that CD8+T-cell activity can be boosted by combining immune checkpoint blockade with chemotherapy. Our discovery of chemotherapy-induced myeloid-driven spatial T-cell exhaustion paves the way for novel immunotherapeutic strategies to unleash CD8+ T-cell-mediated anti-tumor immunity in HGSC.

2.
JCO Precis Oncol ; 8: e2300635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635934

RESUMEN

PURPOSE: The multicenter, open-label, randomized phase 2 NCI-9944 study (NCT02595892) demonstrated that addition of ATR inhibitor (ATRi) berzosertib to gemcitabine increased progression-free survival (PFS) compared to gemcitabine alone (hazard ratio [HR]=0.57, one-sided log-rank P = .044, which met the one-sided significance level of 0.1 used for sample size calculation). METHODS: We report here the final overall survival (OS) analysis and biomarker correlations (ATM expression by immunohistochemistry, mutational signature 3 and a genomic biomarker of replication stress) along with post-hoc exploratory analyses to adjust for crossover from gemcitabine to gemcitabine/berzosertib. RESULTS: At the data cutoff of January 27, 2023 (>30 months of additional follow-up from the primary analysis), median OS was 59.4 weeks with gemcitabine/berzosertib versus 43.0 weeks with gemcitabine alone (HR 0.79, 90% CI 0.52 to 1.2, one-sided log-rank P = .18). An OS benefit with addition of berzosertib to gemcitabine was suggested in patients stratified into the platinum-free interval ≤3 months (N = 26) subgroup (HR, 0.48, 90% CI 0.22 to 1.01, one-sided log-rank P =.04) and in patients with ATM-negative/low (N = 24) tumors (HR, 0.50, 90% CI 0.23 to 1.08, one-sided log-rank P = .06). CONCLUSION: The results of this follow-up analysis continue to support the promise of combined gemcitabine/ATRi therapy in platinum resistant ovarian cancer, an active area of investigation with several ongoing clinical trials.


Asunto(s)
Gemcitabina , Isoxazoles , Neoplasias Ováricas , Pirazinas , Humanos , Femenino , Desoxicitidina/uso terapéutico , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Proteínas de la Ataxia Telangiectasia Mutada/genética
3.
Nat Commun ; 15(1): 1158, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326354

RESUMEN

Exploring non-genetic evolution of cell states during cancer treatments has become attainable by recent advances in lineage-tracing methods. However, transcriptional changes that drive cells into resistant fates may be subtle, necessitating high resolution analysis. Here, we present ReSisTrace that uses shared transcriptomic features of sister cells to predict the states priming treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant phenotypes defined by proteostatic and mRNA surveillance features, reflecting traits enriched in the upcoming subclonal selection. Furthermore, we show that DNA repair deficiency renders cells susceptible to both DNA damaging agents and NK killing in a context-dependent manner. Finally, we leverage the obtained pre-resistance profiles to predict and validate small molecules driving cells to sensitive states prior to treatment. In summary, ReSisTrace resolves pre-existing transcriptional features of treatment vulnerability, facilitating both molecular patient stratification and discovery of synergistic pre-sensitizing therapies.


Asunto(s)
Células Asesinas Naturales , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Carboplatino , Fenotipo , Línea Celular Tumoral
4.
J Allergy Clin Immunol ; 153(5): 1445-1455, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38128835

RESUMEN

BACKGROUND: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, also called APS-1) is an inborn error of immunity with clear signs of B-cell autoimmunity such as neutralizing anti-IFN antibodies. In APECED, mutations in the AIRE gene impair thymic negative selection of T cells. The resulting T-cell alterations may then cause dysregulation of B-cell responses. However, no analysis of interactions of T and B cells in the germinal centers (GCs) in patients' secondary lymphatic tissues has been reported. OBJECTIVE: This study examined the relationship between B cells and follicular T helper cells (TfH) in peripheral blood and lymph node (LN) GCs in patients with APECED. METHODS: Immunophenotyping of peripheral blood B cells and TfH was performed for 24 patients with APECED. Highly multiplexed fluorescent immunohistochemical staining was performed on 7 LN biopsy samples from the patients to study spatial interactions of lymphocytes in the GCs at the single-cell level. RESULTS: The patients' peripheral B-cell phenotype revealed skewing toward a mature B-cell phenotype with marked loss of transitional and naive B cells. The frequency of circulating TfH cells was diminished in the patients, while in the LNs the TfH population was expanded. In LNs the overall frequency of Treg cells and interactions of Treg cells with nonfollicular T cells were reduced, suggesting that aberrant Treg cell function might fail to restrain TfH differentiation. CONCLUSIONS: GC reactions are disrupted in APECED as a result of defective T-cell control.


Asunto(s)
Linfocitos B , Centro Germinal , Ganglios Linfáticos , Poliendocrinopatías Autoinmunes , Células T Auxiliares Foliculares , Humanos , Poliendocrinopatías Autoinmunes/inmunología , Poliendocrinopatías Autoinmunes/genética , Centro Germinal/inmunología , Femenino , Masculino , Linfocitos B/inmunología , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Adulto , Células T Auxiliares Foliculares/inmunología , Adolescente , Niño , Adulto Joven , Persona de Mediana Edad , Inmunofenotipificación , Proteína AIRE , Linfocitos T Colaboradores-Inductores/inmunología
5.
Artículo en Inglés | MEDLINE | ID: mdl-37553211

RESUMEN

The development of single-cell and spatial technologies has enabled a more detailed understanding of the tumor microenvironment and its role in therapy response and clinical outcome of high-grade serous ovarian cancer (HGSC). Interestingly, emerging evidence suggests that HGSCs with different genetic drivers harbor distinct tumor-immune microenvironments. Further, spatial cell-cell interactions have been shown to shape the CD8+ T-cell phenotypes and responses to immune checkpoint blockade therapies. The heterogeneous stroma consisting of cancer-associated fibroblast (CAF) subtypes, endothelia, and site-specific stromal types such as mesothelium modulates treatment responses via increasing stiffness and by producing ligands that promote drug resistance, angiogenesis, or immune escape. Chemotherapy itself shifts CAFs toward an inflammatory phenotype that associates with poor survival and immune-suppressive signaling. New emerging immunotherapies include combinational approaches and agents targeting, for example, the tumor-intrinsic endoplasmic reticulum pathway. A more detailed understanding of the spatial interplay of tumor, immune, and stromal cells in the tumor microenvironment is needed to develop more efficient immunotherapeutic strategies for HGSC.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/terapia , Neoplasias Ováricas/genética , Microambiente Tumoral , Linfocitos T CD8-positivos
6.
Clin Cancer Res ; 29(16): 3110-3123, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805632

RESUMEN

PURPOSE: Deficiency in homologous recombination (HR) repair of DNA damage is characteristic of many high-grade serous ovarian cancers (HGSC). It is imperative to identify patients with homologous recombination-deficient (HRD) tumors as they are most likely to benefit from platinum-based chemotherapy and PARP inhibitors (PARPi). Existing methods measure historical, not necessarily current HRD and/or require high tumor cell content, which is not achievable for many patients. We set out to develop a clinically feasible assay for identifying functionally HRD tumors that can predict clinical outcomes. EXPERIMENTAL DESIGN: We quantified RAD51, a key HR protein, in immunostained formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained from chemotherapy-naïve and neoadjuvant chemotherapy (NACT)-treated HGSC patients. We defined cutoffs for functional HRD separately for these sample types, classified the patients accordingly as HRD or HR-proficient, and analyzed correlations with clinical outcomes. From the same specimens, genomics-based HRD estimates (HR gene mutations, genomic signatures, and genomic scars) were also determined, and compared with functional HR (fHR) status. RESULTS: fHR status significantly predicted several clinical outcomes, including progression-free survival (PFS) and overall survival (OS), when determined from chemo-naïve (PFS, P < 0.0001; OS, P < 0.0001) as well as NACT-treated (PFS, P < 0.0001; OS, P = 0.0033) tumor specimens. The fHR test also identified as HRD those PARPi-at-recurrence-treated patients with longer OS (P = 0.0188). CONCLUSIONS: We developed an fHR assay performed on routine FFPE specimens, obtained from either chemo-naïve or NACT-treated HGSC patients, that can significantly predict real-world platinum-based chemotherapy and PARPi response. See related commentary by Garg and Oza, p. 2957.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Recombinación Homóloga/genética , Mutación , Reparación del ADN por Recombinación/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
7.
J Immunother Cancer ; 11(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36609487

RESUMEN

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibition (PARPi) has demonstrated potent therapeutic efficacy in patients with BRCA-mutant ovarian cancer. However, acquired resistance to PARPi remains a major challenge in the clinic. METHODS: PARPi-resistant ovarian cancer mouse models were generated by long-term treatment of olaparib in syngeneic Brca1-deficient ovarian tumors. Signal transducer and activator of transcription 3 (STAT3)-mediated immunosuppression was investigated in vitro by co-culture experiments and in vivo by analysis of immune cells in the tumor microenvironment (TME) of human and mouse PARPi-resistant tumors. Whole genome transcriptome analysis was performed to assess the antitumor immunomodulatory effect of STING (stimulator of interferon genes) agonists on myeloid cells in the TME of PARPi-resistant ovarian tumors. A STING agonist was used to overcome STAT3-mediated immunosuppression and acquired PARPi resistance in syngeneic and patient-derived xenografts models of ovarian cancer. RESULTS: In this study, we uncover an adaptive resistance mechanism to PARP inhibition mediated by tumor-associated macrophages (TAMs) in the TME. Markedly increased populations of protumor macrophages are found in BRCA-deficient ovarian tumors that rendered resistance to PARPi in both murine models and patients. Mechanistically, PARP inhibition elevates the STAT3 signaling pathway in tumor cells, which in turn promotes protumor polarization of TAMs. STAT3 ablation in tumor cells mitigates polarization of protumor macrophages and increases tumor-infiltrating T cells on PARP inhibition. These findings are corroborated in patient-derived, PARPi-resistant BRCA1-mutant ovarian tumors. Importantly, STING agonists reshape the immunosuppressive TME by reprogramming myeloid cells and overcome the TME-dependent adaptive resistance to PARPi in ovarian cancer. This effect is further enhanced by addition of the programmed cell death protein-1 blockade. CONCLUSIONS: We elucidate an adaptive immunosuppression mechanism rendering resistance to PARPi in BRCA1-mutant ovarian tumors. This is mediated by enrichment of protumor TAMs propelled by PARPi-induced STAT3 activation in tumor cells. We also provide a new strategy to reshape the immunosuppressive TME with STING agonists and overcome PARPi resistance in ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Terapia de Inmunosupresión , Neoplasias Ováricas/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Factor de Transcripción STAT3/metabolismo , Microambiente Tumoral
8.
NPJ Precis Oncol ; 6(1): 96, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581696

RESUMEN

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.

9.
Curr Issues Mol Biol ; 44(2): 686-698, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35723333

RESUMEN

Adult-type granulosa cell tumor (AGCT) is a rare ovarian malignancy characterized by slow growth and hormonal activity. The prognosis of AGCT is generally favorable, but one-third of patients with low-stage disease experience a late relapse, and over half of them die of AGCT. To identify markers that would distinguish patients at risk for relapse, we performed Lexogen QuantSeq 3' mRNA sequencing on formalin-fixed paraffin-embedded, archival AGCT tissue samples tested positive for the pathognomonic Forkhead Box L2 (FOXL2) mutation. We compared the transcriptomic profiles of 14 non-relapsed archival primary AGCTs (follow-up time 17-26 years after diagnosis) with 13 relapsed primary AGCTs (follow-up time 1.7-18 years) and eight relapsed tumors (follow-up time 2.8-18.9 years). Non-relapsed and relapsed primary AGCTs had similar transcriptomic profiles. In relapsed tumors three genes were differentially expressed: plasmalemma vesicle associated protein (PLVAP) was upregulated (p = 0.01), whereas argininosuccinate synthase 1 (ASS1) (p = 0.01) and perilipin 4 (PLIN4) (p = 0.02) were downregulated. PLVAP upregulation was validated using tissue microarray RNA in situ hybridization. In our patient cohort with extremely long follow-up, we observed similar gene expression patterns in both primary AGCT groups, suggesting that relapse is not driven by transcriptomic changes. These results reinforce earlier findings that molecular markers do not predict AGCT behavior or risk of relapse.

10.
Cancer Discov ; 12(8): 1904-1921, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35552618

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE: This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.


Asunto(s)
Interferón Tipo I , Lisofosfolípidos , Neoplasias Ováricas , Femenino , Humanos , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Microambiente Tumoral
11.
Cancer Cell ; 39(12): 1623-1642.e20, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34739845

RESUMEN

The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.


Asunto(s)
Células Presentadoras de Antígenos/metabolismo , Antígenos CD28/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Células Mieloides/metabolismo , Neoplasias/tratamiento farmacológico , Nicho de Células Madre/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/inmunología
12.
Nat Commun ; 12(1): 5574, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552099

RESUMEN

In a trial of patients with high grade serous ovarian cancer (HGSOC), addition of the ATR inhibitor berzosertib to gemcitabine improved progression free survival (PFS) compared to gemcitabine alone but biomarkers predictive of treatment are lacking. Here we report a candidate biomarker of response to gemcitabine versus combined gemcitabine and ATR inhibitor therapy in HGSOC ovarian cancer. Patients with replication stress (RS)-high tumors (n = 27), defined as harboring at least one genomic RS alteration related to loss of RB pathway regulation and/or oncogene-induced replication stress achieve significantly prolonged PFS (HR = 0.38, 90% CI, 0.17-0.86) on gemcitabine monotherapy compared to those with tumors without such alterations (defined as RS-low, n = 30). However, addition of berzosertib to gemcitabine benefits only patients with RS-low tumors (gemcitabine/berzosertib HR 0.34, 90% CI, 0.13-0.86) and not patients with RS-high tumors (HR 1.11, 90% CI, 0.47-2.62). Our findings support the notion that the exacerbation of RS by gemcitabine monotherapy is adequate for lethality in RS-high tumors. Conversely, for RS-low tumors addition of berzosertib-mediated ATR inhibition to gemcitabine is necessary for lethality to occur. Independent prospective validation of this biomarker is required.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Replicación del ADN/genética , Desoxicitidina/análogos & derivados , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Biomarcadores de Tumor/genética , Desoxicitidina/uso terapéutico , Femenino , Humanos , Isoxazoles/uso terapéutico , Mutación , Oncogenes/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Supervivencia sin Progresión , Pirazinas/uso terapéutico , Reparación del ADN por Recombinación/genética , Proteínas de Unión a Retinoblastoma/genética , Gemcitabina
13.
Nat Cancer ; 2(6): 598-610, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34179826

RESUMEN

DNA polymerase theta (POLθ) is synthetic lethal with Homologous Recombination (HR) deficiency and thus a candidate target for HR-deficient cancers. Through high-throughput small molecule screens we identified the antibiotic Novobiocin (NVB) as a specific POLθ inhibitor that selectively kills HR-deficient tumor cells in vitro and in vivo. NVB directly binds to the POLθ ATPase domain, inhibits its ATPase activity, and phenocopies POLθ depletion. NVB kills HR-deficient breast and ovarian tumors in GEMM, xenograft and PDX models. Increased POLθ levels predict NVB sensitivity, and BRCA-deficient tumor cells with acquired resistance to PARP inhibitors (PARPi) are sensitive to NVB in vitro and in vivo. Mechanistically, NVB-mediated cell death in PARPi-resistant cells arises from increased double-strand break end resection, leading to accumulation of single-strand DNA intermediates and non-functional RAD51 foci. Our results demonstrate that NVB may be useful alone or in combination with PARPi in treating HR-deficient tumors, including those with acquired PARPi resistance. (151/150).


Asunto(s)
Recombinación Homóloga , Neoplasias Ováricas , Adenosina Trifosfatasas/genética , Femenino , Recombinación Homóloga/genética , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
14.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946730

RESUMEN

Granulosa cell tumors (GCT) constitute only ~5% of ovarian neoplasms yet have significant consequences, as up to 80% of women with recurrent GCT will die of the disease. This study investigated the effectiveness of procaspase-activating compound 1 (PAC-1), an activator of procaspase-3, in treating adult GCT (AGCT) in combination with selected apoptosis-inducing agents. Sensitivity of the AGCT cell line KGN to these drugs, alone or in combination with PAC-1, was tested using a viability assay. Our results show a wide range in cytotoxic activity among the agents tested. Synergy with PAC-1 was most pronounced, both empirically and by mathematical modelling, when combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This combination showed rapid kinetics of apoptosis induction as determined by caspase-3 activity, and strongly synergistic killing of both KGN as well as patient samples of primary and recurrent AGCT. We have demonstrated that the novel combination of two pro-apoptotic agents, TRAIL and PAC-1, significantly amplified the induction of apoptosis in AGCT cells, warranting further investigation of this combination as a potential therapy for AGCT.


Asunto(s)
Tumor de Células de la Granulosa/tratamiento farmacológico , Hidrazonas/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Piperazinas/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Benzoquinonas/administración & dosificación , Carboplatino/administración & dosificación , Caspasa 3/metabolismo , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Femenino , Tumor de Células de la Granulosa/enzimología , Tumor de Células de la Granulosa/patología , Humanos , Técnicas In Vitro , Conceptos Matemáticos , Modelos Biológicos , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Gemcitabina
15.
J Pathol Clin Res ; 7(3): 243-252, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33428330

RESUMEN

Adult-type granulosa cell tumors (aGCTs) account for 90% of malignant ovarian sex cord-stromal tumors and 2-5% of all ovarian cancers. These tumors are usually diagnosed at an early stage and are treated with surgery. However, one-third of patients relapse between 4 and 8 years after initial diagnosis, and there are currently no effective treatments other than surgery for these relapsed patients. As the majority of aGCTs (>95%) harbor a somatic mutation in FOXL2 (c.C402G; p.C134W), the aim of this study was to identify genetic mutations besides FOXL2 C402G in aGCTs that could explain the clinical diversity of this disease. Whole-genome sequencing of 10 aGCTs and their matched normal blood was performed to identify somatic mutations. From this analysis, a custom amplicon-based panel was designed to sequence 39 genes of interest in a validation cohort of 83 aGCTs collected internationally. KMT2D inactivating mutations were present in 10 of 93 aGCTs (10.8%), and the frequency of these mutations was similar between primary and recurrent aGCTs. Inactivating mutations, including a splice site mutation in candidate tumor suppressor WNK2 and nonsense mutations in PIK3R1 and NLRC5, were identified at a low frequency in our cohort. Missense mutations were identified in cell cycle-related genes TP53, CDKN2D, and CDK1. From these data, we conclude that aGCTs are comparatively a homogeneous group of tumors that arise from a limited set of genetic events and are characterized by the FOXL2 C402G mutation. Secondary mutations occur in a subset of patients but do not explain the diverse clinical behavior of this disease. As the FOXL2 C402G mutation remains the main driver of this disease, progress in the development of therapeutics for aGCT would likely come from understanding the functional consequences of the FOXL2 C402G mutation.


Asunto(s)
Biomarcadores de Tumor/genética , Proteína Forkhead Box L2/genética , Tumor de Células de la Granulosa/genética , Mutación , Neoplasias Ováricas/genética , Adulto , Anciano , Boston , Colombia Británica , Proteína Quinasa CDC2/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/genética , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Europa (Continente) , Femenino , Predisposición Genética a la Enfermedad , Tumor de Células de la Granulosa/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Neoplasias Ováricas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Secuenciación Completa del Genoma
16.
Cancer Res ; 81(10): 2774-2787, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33514515

RESUMEN

Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.


Asunto(s)
Proteína BRCA1/fisiología , Evolución Clonal , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Proliferación Celular , Femenino , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Ratones , Ratones Noqueados , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transcriptoma , Células Tumorales Cultivadas
17.
Cell Stem Cell ; 28(1): 33-47.e8, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32997960

RESUMEN

Bone marrow failure (BMF) in Fanconi anemia (FA) patients results from dysfunctional hematopoietic stem and progenitor cells (HSPCs). To identify determinants of BMF, we performed single-cell transcriptome profiling of primary HSPCs from FA patients. In addition to overexpression of p53 and TGF-ß pathway genes, we identified high levels of MYC expression. We correspondingly observed coexistence of distinct HSPC subpopulations expressing high levels of TP53 or MYC in FA bone marrow (BM). Inhibiting MYC expression with the BET bromodomain inhibitor (+)-JQ1 reduced the clonogenic potential of FA patient HSPCs but rescued physiological and genotoxic stress in HSPCs from FA mice, showing that MYC promotes proliferation while increasing DNA damage. MYC-high HSPCs showed significant downregulation of cell adhesion genes, consistent with enhanced egress of FA HSPCs from bone marrow to peripheral blood. We speculate that MYC overexpression impairs HSPC function in FA patients and contributes to exhaustion in FA bone marrow.


Asunto(s)
Anemia de Fanconi , Animales , Médula Ósea , Daño del ADN , Anemia de Fanconi/genética , Células Madre Hematopoyéticas , Humanos , Ratones , Factor de Crecimiento Transformador beta
18.
Exp Hematol ; 93: 70-84.e4, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166613

RESUMEN

Fanconi anemia (FA) is a chromosome instability syndrome with congenital abnormalities, cancer predisposition and bone marrow failure (BMF). Although hematopoietic stem and progenitor cell (HSPC) transplantation is the recommended therapy, new therapies are needed for FA patients without suitable donors. BMF in FA is caused, at least in part, by a hyperactive growth-suppressive transforming growth factor ß (TGFß) pathway, regulated by the TGFß1, TGFß2, and TGFß3 ligands. Accordingly, the TGFß pathway is an attractive therapeutic target for FA. While inhibition of TGFß1 and TGFß3 promotes blood cell expansion, inhibition of TGFß2 is known to suppress hematopoiesis. Here, we report the effects of AVID200, a potent TGFß1- and TGFß3-specific inhibitor, on FA hematopoiesis. AVID200 promoted the survival of murine FA HSPCs in vitro. AVID200 also promoted in vitro the survival of human HSPCs from patients with FA, with the strongest effect in patients progressing to severe aplastic anemia or myelodysplastic syndrome (MDS). Previous studies have indicated that the toxic upregulation of the nonhomologous end-joining (NHEJ) pathway accounts, at least in part, for the poor growth of FA HSPCs. AVID200 downregulated the expression of NHEJ-related genes and reduced DNA damage in primary FA HSPC in vitro and in in vivo models. Collectively, AVID200 exhibits activity in FA mouse and human preclinical models. AVID200 may therefore provide a therapeutic approach to improving BMF in FA.


Asunto(s)
Anemia de Fanconi/tratamiento farmacológico , Hematopoyesis/efectos de los fármacos , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta3/antagonistas & inhibidores , Adolescente , Adulto , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Niño , Preescolar , Anemia de Fanconi/metabolismo , Anemia de Fanconi/fisiopatología , Femenino , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo
19.
Cancer Discov ; 11(2): 384-407, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158843

RESUMEN

Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of Trp53, Brca1, Pten, and Nf1 and overexpression of Myc and Trp53 R172H, which was contrasted with an identical model carrying wild-type Brca1. For homologous recombination-proficient tumors, we constructed genotypes combining loss of Trp53 and overexpression of Ccne1, Akt2, and Trp53 R172H, and driven by KRAS G12V or Brd4 or Smarca4 overexpression. These lines form tumors recapitulating human disease, including genotype-driven responses to treatment, and enabled us to identify follistatin as a driver of resistance to checkpoint inhibitors. These data provide proof of concept that our models can identify new immunotherapy targets in HGSC. SIGNIFICANCE: We engineered a panel of murine fallopian tube epithelial cells bearing mutations typical of HGSC and capable of forming tumors in syngeneic immunocompetent hosts. These models recapitulate tumor microenvironments and drug responses characteristic of human disease. In a Ccne1-overexpressing model, immune-checkpoint resistance was driven by follistatin.This article is highlighted in the In This Issue feature, p. 211.


Asunto(s)
Cistadenocarcinoma Seroso/tratamiento farmacológico , Modelos Animales de Enfermedad , Neoplasias de las Trompas Uterinas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Animales , Cistadenocarcinoma Seroso/genética , Quimioterapia Combinada , Neoplasias de las Trompas Uterinas/genética , Femenino , Ratones Transgénicos , Neoplasias Ováricas/genética
20.
Bioinformatics ; 37(9): 1263-1268, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33135052

RESUMEN

MOTIVATION: Single-cell proteomics technologies, such as mass cytometry, have enabled characterization of cell-to-cell variation and cell populations at a single-cell resolution. These large amounts of data, require dedicated, interactive tools for translating the data into knowledge. RESULTS: We present a comprehensive, interactive method called Cyto to streamline analysis of large-scale cytometry data. Cyto is a workflow-based open-source solution that automates the use of state-of-the-art single-cell analysis methods with interactive visualization. We show the utility of Cyto by applying it to mass cytometry data from peripheral blood and high-grade serous ovarian cancer (HGSOC) samples. Our results show that Cyto is able to reliably capture the immune cell sub-populations from peripheral blood and cellular compositions of unique immune- and cancer cell subpopulations in HGSOC tumor and ascites samples. AVAILABILITYAND IMPLEMENTATION: The method is available as a Docker container at https://hub.docker.com/r/anduril/cyto and the user guide and source code are available at https://bitbucket.org/anduril-dev/cyto. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteómica , Programas Informáticos , Interpretación Estadística de Datos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...