Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Polymers (Basel) ; 14(14)2022 Jul 14.
Article En | MEDLINE | ID: mdl-35890640

This paper presents a simple method of obtaining a bacterial cellulose (BC) composite with the addition of graphene oxide (GO) using an in situ method and studies the influence of GO nanoparticles on the structure and properties of the obtained membranes. Microorganisms obtained from Golden Delicious apple vinegar were used to obtain the BC. During the biosynthesis, GO was introduced in the amounts of 3.7, 5.4 and 7.1% w/w. The resulting BC/GO composite was characterized by high water content (~400%), a thickness of about 1.1 mm (in wet form) and a cellulose nanofiber diameter of ~100 nm. The possibility of using the resulting composite membranes as potential active dressings with the sustained-release analgesic medicine-paracetamol-was investigated. The BC/GO composite membranes were characterized by a medicine sorption of 60 mg/g of BC, a slow desorption time, a constant medicine concentration over time and an 80% paracetamol release rate after 24 h. The morphology of membrane surfaces and cross-sections were examined by means of scanning electron microscopy (SEM). Infrared spectroscopy (FTIR), X-ray structure studies (WAXS) as well as thermal analysis (TGA) demonstrated the presence of GO in the BC matrix and interactions between the matrix and the additive.

2.
Materials (Basel) ; 14(22)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34832407

Graphene and its derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), due to their properties, have been enjoying great interest for over two decades, particularly in the context of additive manufacturing (AM) applications in recent years. High-impact polystyrene (HIPS) is a polymer used in 3D printing technology due to its high dimensional stability, low cost, and ease of processing. However, the ongoing development of AM creates the need to produce modern feedstock materials with better properties and functionality. This can be achieved by introducing reduced graphene oxide into the polymer matrix. In this study, printable composite filaments were prepared and characterized in terms of morphology and thermal and mechanical properties. Among the obtained HIPS/rGO composites, the filament containing 0.5 wt% of reduced graphene oxide had the best mechanical properties. Its tensile strength increased from 19.84 to 22.45 MPa, for pure HIPS and HIPS-0.5, respectively. Furthermore, when using the HIPS-0.5 filament in the printing process, no clogging of the nozzle was observed, which may indicate good dispersion of the rGO in the polymer matrix.

3.
Materials (Basel) ; 14(17)2021 Aug 26.
Article En | MEDLINE | ID: mdl-34500927

Currently, the challenge for bone tissue engineering is to design a scaffold that would mimic the structure and biological functions of the extracellular matrix and would be able to direct the appropriate response of cells through electrochemical signals, thus stimulate faster bone formation. The purpose of the presented research was to perform and evaluate PCL/n-HAp scaffolds locally modified with a conductive polymer-polyaniline. The material was obtained using electrospinning, and a simple ink-jet printing method was applied to receive the conductive polyaniline patterns on the surface of the electrospun materials. The samples of scaffolds were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal analysis (DSC, TGA), and infrared spectroscopy (FTIR) before and after immersion of the material in Simulated Body Fluid. The effect of PANI patterns on changes in the SBF mineralization process and cell morphology was evaluated in order to prove that the presented material enables the growth and proliferation of bone cells.

4.
Nanotechnol Sci Appl ; 14: 49-67, 2021.
Article En | MEDLINE | ID: mdl-33727805

INTRODUCTION: Oxidative tissue damage caused by reactive oxygen species results in a significant decrease in the total antioxidant capacity of the biological system. The aim of this interdisciplinary study was to answer the question of whether active antioxidants modify, at a molecular and supramolecular level, the tissue of pathological amnion and the necrotic eschar degraded in thermal burn. METHODS: A Nicolet 6700 Fourier-transform spectrophotometer with OMNIC software and the EasiDiff diffusion accessory were used in the FTIR spectroscopic analysis. A NICOLET MAGNA-IR 860 spectrometer with FT-Raman accessory was used to record the Raman spectra of the samples. The samples were exposed to bacteria capable of causing nosocomial infections, ie Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Pseudomonas aeruginosa. Whereas samples of hypotrophic amnion interacted with Staphylococcus aureus, Escherichia coli and Enterococcus faecalis. The obtained flame retardant effect of placentas was evaluated using the method of the limiting oxygen index (LOI). RESULTS: The infrared spectroscopy analysis proved that after modification of the amniotic samples in graphene oxide and ortho-silicic acid, the amide II band is split into two components. Incubation of samples in modifier solutions: graphene oxide, sodium ascorbate and L-ascorbic acid results in shifts and changes of intensity within the broadly understood lipid band 1743-1745-1747 cm-1. The oxidising changes observed within the lipid and amide bands are affected by the incubation effect of graphene oxide as a modifier, possibly adsorbing on the surface of the amniotic membrane. On the basis of microbiological studies, pathogenic bacteria commonly causing amniotic infections and growing in burn wounds were found to have particularly good resistance to stabilized ortho-silicic acid (E. coli) and lactoferrin (S.aureus). CONCLUSION: This thermogravimetric study found the highest stability of the analysed tissues (hypotrophic amnion and burnt epidermis) after modification with graphene oxide and sodium ascorbate.

5.
Carbohydr Polym ; 254: 117436, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33357909

The paper presents the results of a study on the preparation of cellulose-based composite fibres (CEL) with graphene oxide addition (GO). Composite fibres (GO/CEL) were prepared via the wet spinning method from CEL solutions in 1-ethyl-3-methylimidazolium acetate (EMIMAc) that contained a nano-addition of GO dispersion in N,N-dimethylformamide (DMF). The GO contents of the composite fibres were 0, 0.21, 0.50, 0.98, and 1.97 % w w. The fibres were coagulated in two solvents: distilled water and methanol. The results demonstrated that the amount of GO additive and the type of coagulant significantly impact the physicochemical, mechanical and structural properties of the CEL and GO/CEL fibres. The use of distilled water in a coagulation bath causes a degree of crystallinity of 31.0-40.8 % (WAXS) and a shift in the thermal decomposition temperature (by approximately 19 °C) towards higher temperatures (TGA). The results demonstrate improvements in the mechanical properties of the GO/CEL fibres, which were at the level of 9.43-14.18 cN/tex. In addition, the GO/CEL fibres exhibit satisfactory GO dispersion throughout their volume.


Biocompatible Materials/chemistry , Cellulose/chemistry , Graphite/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Cellulose/ultrastructure , Dimethylformamide/chemistry , Humans , Materials Testing , Methanol/chemistry , Solvents/chemistry , Temperature , Viscosity , Water/chemistry
6.
Polymers (Basel) ; 12(7)2020 Jun 30.
Article En | MEDLINE | ID: mdl-32629867

Reduced graphene oxide (rGO) was used to obtain Polystyrene (PS)/rGO nanocomposites via in-situ suspension polymerization. The main goal of the article was to determine how rGO influences the morphology and thermal properties of PS beads. The obtained samples were studied by means of a scanning electron microscope (SEM), and calorimetric and thermogravimetric analysis (DCS, TGA). It was proven that the addition of rGO, due to the presence of polar functional groups, causes significant changes in bead sizes and size distribution, and in their morphology (on the surface and in cross-section). The increasing amount of rGO in the polymer matrix increased the size of beads from 0.36 to 3.17 mm for pure PS and PS with 0.2 wt% rGO content, respectively. PS/rGO nanocomposites are characterized by distinctly improved thermostability, which is primarily expressed in the increase in their decomposition temperature. For a sample containing 0.3 wt% rGO, the difference is more than 12 °C in comparison to pure PS beads.

7.
Polymers (Basel) ; 12(7)2020 Jun 29.
Article En | MEDLINE | ID: mdl-32610650

Nanocomposite fibers based on poly(butylene terephthalate) (PBT) and reduced graphene oxide (rGO) were prepared using a method able to disperse graphene in one step into a polymer matrix. The studies were performed for fibers containing four different concentrations of rGO at different take-up velocities. The supermolecular structures of the fibers at the crystallographic and lamellar levels were examined by means of calorimetric and X-ray scattering methods (DSC, WAXS, and SAXS). It was found that the fiber structure is mainly influenced by the take-up velocity. Fibers spun at low and medium take-up velocities contained a crystalline α-form, whereas the fibers spun at a high take-up velocity contained a smectic mesophase. During annealing, the smectic phase transformed into its α-form. The degree of transformation depended on the rGO content. Reduced graphene mainly hindered the crystallization of PBT by introducing steric obstacles confining the ordering of the macromolecules of PBT.

8.
Polymers (Basel) ; 12(4)2020 Apr 01.
Article En | MEDLINE | ID: mdl-32244680

The alternative method of reducing the flammability of polyethylene terephthalate (PET) fibers, analogous to dyeing of PET fibers with dispersed dyes in a high-temperature bath, was proposed. A commercial organophilic montmorillonite Cloisite®15A (C15A) was applied as a flame retardant. The aim of the presented work was to evaluate the effectiveness of the introduced modifier and the improvement of the flame-retardant properties of PET fibers by limiting oxygen index (LOI) and thermogravimetric analysis (TGA) measurements. Evolved gas analysis (EGA) by spectrometric method (FTIR) during coupled thermogravimetric analysis (TGA) was applied in order to confirm no increase in the toxicity of volatile degradation products released from burning modified fibers. The nanocomposite nature of modified fibers was confirmed based on the structural parameters of the fibers determined using wide-angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) X-ray diffraction methods.

9.
Membranes (Basel) ; 10(4)2020 Mar 29.
Article En | MEDLINE | ID: mdl-32235293

The paper presents a method of obtaining composite polyacrylonitrile-based (PAN) membranes with the addition of reduced graphene oxide (rGO). The membranes were obtained using phase inversion method from a homogeneous rGO dispersion in a solution of PAN dissolved in N, N-dimethylformamide (DMF). The impact of the amount of rGO addition to the PAN matrix on the physicochemical, structural, transport, and separation properties and on fouling resistance was studied. Composite membranes, due to the method of preparation used and the addition of rGO, are characterized by very good transport properties (~390 L/m2 h) and by a high degree of protein retention (85%). Reduced graphene oxide has biocidal properties, which, as we have shown, depend on the size of nanoparticles and the type of microorganism. rGO/PAN membranes, on the other hand, show biostatic properties against Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcuc aureus) and fungi (Candida albicans). Thus, the obtained composite membranes can be potentially used in water disinfection.

10.
Polymers (Basel) ; 12(4)2020 Apr 14.
Article En | MEDLINE | ID: mdl-32295248

An effective ß-nucleating agent for polypropylene crystallization was obtained by the functionalization of reduced graphene oxide with calcium pimelate. The nucleating ability of the modified reduced graphene oxide (rGO-CP) was confirmed during non-isothermal crystallization. In further examinations, the rGO-CP was used as an additive to modify polypropylene fibers. The fibers were extruded in laboratory conditions. Gravity spun fibers containing three different concentrations of the rGO-CP and fibers taken at three different velocities were obtained. The supramolecular structure of the fibers was examined by means of calorimetric and X-Ray Scattering methods (DSC, WAXS, and SAXS). The considerable amount of -iPP was obtained only in the gravity spun fibers. In the fibers extruded at higher velocities, the diminishing impact of the additive on the fibers structure was revealed. The changes observed in the fiber structure in connection with the impact of the additive on polypropylene crystallization was discussed.

11.
Analyst ; 140(13): 4599-607, 2015 Jul 07.
Article En | MEDLINE | ID: mdl-26029873

Differential scanning calorimetry (DSC) and thermogravimetric (TGA) investigations, acetate electrophoresis (CAE), Fourier-transform infrared spectrometry (FTIR), scanning electron microscopy (SEM) analysis and microbiological procedures were all carried out after heating the samples to a temperature sufficient for simulating a burn incident. In particular, the purpose of the present study was to analyze the effect of antioxidants, such as fucoidan from brown seaweed and flame-retardant cyclic organophosphates and phosphonates, on an organic chicken skin that gets changed by a burn incident. DSC was considered to be a useful tool in assessing in vitro temperature-mediated cross-linking; an innovative analytical conclusion was obtained from the experimentation described in the paper. FTIR tests revealed that heating a dry organic chicken skin to the boiling point leads to the disappearance of a wide band in the 1650-1550 cm(-1) area or the conversion of a band, which may be attributed to the intermolecular ß-sheet aggregates. Fucoidan from brown seaweed and flame-retardant cyclic organophosphates and phosphonates probably bind with the collagen that is changed by the burn (in addition to the influence of antioxidant solutions on samples of a blank or not boiled organic chicken skin) incident forming a polymer film with the collagen of the chicken skin surface (SEM analysis), decreasing the aggregation process and native collagen recovery. Good bacteriostatic properties were determined for fucoidan samples from brown seaweed and flame-retardant cyclic organophosphates and phosphonates against the pathogenic bacteria Escherichia coli and Staphylococcus aureus. Thus, it was observed that the fucoidan incorporated into collagen films can be used as a therapeutically active biomaterial that speeds up the wound-healing process.


Antioxidants/pharmacology , Burns/drug therapy , Burns/microbiology , Hot Temperature/adverse effects , Animals , Antioxidants/therapeutic use , Burns/etiology , Calorimetry, Differential Scanning , Chickens , Electrophoresis , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Microscopy, Electron, Scanning , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Skin/drug effects , Skin/microbiology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
...