Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Cell Death Differ ; 23(4): 654-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26470728

RESUMEN

Traumatic brain injury (TBI) is a leading cause of mortality and disability. MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at post-transcriptional level and may be key modulators of neuronal apoptosis, yet their role in secondary injury after TBI remains largely unexplored. Changes in miRs after controlled cortical impact (CCI) in mice were examined during the first 72 h using miR arrays and qPCR. One selected miR (711) was examined with regard to its regulation and relation to cell death; effects of miR-711 modulation were evaluated after CCI and using in vitro cell death models of primary cortical neurons. Levels of miR-711 were increased in the cortex early after TBI and in vitro models through rapid upregulation of miR-711 transcription (pri-miR-711) rather than catabolism. Increases coincided with downregulation of the pro-survival protein Akt, a predicted target of miR-711, with sequential activation of forkhead box O3 (FoxO3)a/glycogen synthase kinase 3 (GSK3)α/ß, pro-apoptotic BH3-only molecules PUMA (Bcl2-binding component 3) and Bim (Bcl2-like 11 (apoptosis facilitator)), and mitochondrial release of cytochrome c and AIF. miR-711 and Akt (mRNA) co-immunoprecipitated with the RNA-induced silencing complex (RISC). A miR-711 hairpin inhibitor attenuated the apoptotic mechanisms and decreased neuronal death in an Akt-dependent manner. Conversely, a miR-711 mimic enhanced neuronal apoptosis. Central administration of the miR-711 hairpin inhibitor after TBI increased Akt expression and attenuated apoptotic pathways. Treatment reduced cortical lesion volume, neuronal cell loss in cortex and hippocampus, and long-term neurological dysfunction. miR-711 changes contribute to neuronal cell death after TBI, in part by inhibiting Akt, and may serve as a novel therapeutic target.


Asunto(s)
Apoptosis , Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , MicroARNs/biosíntesis , Neuronas/metabolismo , Regulación hacia Arriba , Animales , Lesiones Traumáticas del Encéfalo/patología , Corteza Cerebral/patología , Masculino , Ratones , Neuronas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Cell Death Dis ; 6: e1582, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25569099

RESUMEN

Autophagy is a catabolic mechanism facilitating degradation of cytoplasmic proteins and organelles in a lysosome-dependent manner. Autophagy flux is necessary for normal neuronal homeostasis and its dysfunction contributes to neuronal cell death in several neurodegenerative diseases. Elevated autophagy has been reported after spinal cord injury (SCI); however, its mechanism, cell type specificity and relationship to cell death are unknown. Using a rat model of contusive SCI, we observed accumulation of LC3-II-positive autophagosomes starting at posttrauma day 1. This was accompanied by a pronounced accumulation of autophagy substrate protein p62, indicating that early elevation of autophagy markers reflected disrupted autophagosome degradation. Levels of lysosomal protease cathepsin D and numbers of cathepsin-D-positive lysosomes were also decreased at this time, suggesting that lysosomal damage may contribute to the observed defect in autophagy flux. Normalization of p62 levels started by day 7 after SCI, and was associated with increased cathepsin D levels. At day 1 after SCI, accumulation of autophagosomes was pronounced in ventral horn motor neurons and dorsal column oligodendrocytes and microglia. In motor neurons, disruption of autophagy strongly correlated with evidence of endoplasmic reticulum (ER) stress. As autophagy is thought to protect against ER stress, its disruption after SCI could contribute to ER-stress-induced neuronal apoptosis. Consistently, motor neurons showing disrupted autophagy co-expressed ER-stress-associated initiator caspase 12 and cleaved executioner caspase 3. Together, these findings indicate that SCI causes lysosomal dysfunction that contributes to autophagy disruption and associated ER-stress-induced neuronal apoptosis.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Neuronas/patología , Traumatismos de la Médula Espinal/patología , Animales , Apoptosis , Sustancia Gris/patología , Lisosomas/metabolismo , Masculino , Microglía/metabolismo , Oligodendroglía/metabolismo , Fagosomas/metabolismo , Ratas Sprague-Dawley , Sustancia Blanca/patología
3.
J Neurosci Res ; 80(3): 369-80, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15795935

RESUMEN

Caspases are implicated in apoptotic cell death after spinal cord injury (SCI), but the relative contribution of these proteases to the secondary injury process has been only partially described. We examined the activation of caspases 1, 2, 3, 6, 8, and 9 from 1 hr to 7 days after moderate contusion injury induced by a weight-drop method in the rat. Tissue homogenates from a 1-cm segment of cord that contained the site of impact were processed by fluorometric enzymatic activity assays and/or immunoblotting methods. Caspases 3, 8, and 9 were activated from 1 to 72 hr after injury, whereas caspases 1, 2, and 6 were not. Double-label immunohistochemistry utilizing antibodies for CNS cell-type-specific markers and active subunits of caspases 3, 8, or 9 showed that, at 4 and 72 hr after injury, these caspases were primarily activated in neurons and oligodendrocytes, rather than in astrocytes. Active caspase subunits were present in neurons within the necrotic lesion core at 4 hr after injury and in cells more than several segments away at 4 or 72 hr after injury. Intrathecal injection of the pan-caspase inhibitor Boc-Asp (OMe)-fluoromethylketone (Boc-d-fmk) at 15 min after injury improved locomotor function 21 and 28 days later. Treatment with the selective caspase 3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (z-DEVD-fmk) improved function at 21 days after injury. These data suggest that caspases 3, 8, and 9 may be differentially activated in white and gray matter after spinal cord trauma and that such activation may contribute to subsequent neurological dysfunction.


Asunto(s)
Apoptosis/fisiología , Caspasas/metabolismo , Degeneración Nerviosa/enzimología , Traumatismos de la Médula Espinal/enzimología , Animales , Biomarcadores/metabolismo , Inhibidores de Caspasas , Modelos Animales de Enfermedad , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inmunohistoquímica , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Trastornos del Movimiento/fisiopatología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/fisiopatología , Neuronas/enzimología , Neuronas/patología , Oligodendroglía/enzimología , Oligodendroglía/patología , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo , Resultado del Tratamiento
4.
Cell Death Differ ; 11(10): 1121-32, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15375383

RESUMEN

Anandamide (arachidonoylethanolamide or AEA) is an endocannabinoid that acts at vanilloid (VR1) as well as at cannabinoid (CB1/CB2) and NMDA receptors. Here, we show that AEA, in a dose-dependent manner, causes cell death in cultured rat cortical neurons and cerebellar granule cells. Inhibition of CB1, CB2, VR1 or NMDA receptors by selective antagonists did not reduce AEA neurotoxicity. Anandamide-induced neuronal cell loss was associated with increased intracellular Ca(2+), nuclear condensation and fragmentation, decreases in mitochondrial membrane potential, translocation of cytochrome c, and upregulation of caspase-3-like activity. However, caspase-3, caspase-8 or caspase-9 inhibitors, or blockade of protein synthesis by cycloheximide did not alter anandamide-related cell death. Moreover, AEA caused cell death in caspase-3-deficient MCF-7 cell line and showed similar cytotoxic effects in caspase-9 dominant-negative, caspase-8 dominant-negative or mock-transfected SH-SY5Y neuroblastoma cells. Anandamide upregulated calpain activity in cortical neurons, as revealed by alpha-spectrin cleavage, which was attenuated by the calpain inhibitor calpastatin. Calpain inhibition significantly limited anandamide-induced neuronal loss and associated cytochrome c release. These data indicate that AEA neurotoxicity appears not to be mediated by CB1, CB2, VR1 or NMDA receptors and suggest that calpain activation, rather than intrinsic or extrinsic caspase pathways, may play a critical role in anandamide-induced cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Ácidos Araquidónicos/farmacología , Calpaína/metabolismo , Caspasas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Antagonistas de Receptores de Cannabinoides , Inhibidores de Caspasas , Caspasas/deficiencia , Caspasas/genética , Células Cultivadas , Citocromos c/metabolismo , Endocannabinoides , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/metabolismo , Alcamidas Poliinsaturadas , Transporte de Proteínas , Ratas , Receptores de Cannabinoides/metabolismo , Receptores de Droga/antagonistas & inhibidores , Receptores de Droga/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
5.
J Neurosci Methods ; 136(1): 99-102, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15126050

RESUMEN

Typically small animal radiological images are obtained after placing the animal in the center of the imaging device using beds or platforms, and then adjusting the position after obtaining a scout image. Such a process does not permit the reproducible visualization of the same anatomical plane with repeated examinations. We have developed a device that allows stereotaxic placement of an animal in precisely the same position for repeated examinations. The instrument incorporates a full range of physiological monitoring and life support systems including temperature control, anesthesia delivery and respiratory monitoring. Using magnetic resonance imaging (MRI), the accuracy and reliability of this device is demonstrated in a rat traumatic brain injury (TBI) model.


Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/métodos , Técnicas Estereotáxicas/instrumentación , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
6.
J Neurotrauma ; 19(9): 1039-50, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12482117

RESUMEN

Intercellular adhesion molecule-1 (ICAM-1) is an endothelial protein that facilitates invasion of leukocytes into the CNS in response to injury or inflammation. ICAM-1 expression correlates with the severity of clinical head injuries, but its importance in secondary injury events is not fully understood. Therefore, we evaluated ICAM-1 expression and the effect of anti-ICAM-1 treatment on motor recovery and neutrophil invasion after traumatic brain injury induced via the lateral fluid-percussion method in the rat. ICAM-1 was expressed in large and small blood vessels within the injured cortex at 10 and 24 h after injury. Repeated administration of anti-ICAM-1 antibody (clone 1A29) at 1, 10, and again at 24 h after injury significantly improved performance in two of three motor tests, compared to saline controls. Equal doses of nonspecific control antibody (IgG) also significantly improved motor test scores, compared to saline controls. Cortical myeloperoxidase activity, an indicator of neutrophil invasion, was significantly reduced 26 h after injury in animals treated with anti-ICAM-1. Animals treated with IgG showed a trend toward reduction that did not reach significance. These data suggest that ICAM-1 may be involved in neutrophil invasion and neurological dysfunction after TBI, but also implicate a role for a nonspecific antibody effect in improved functional outcome.


Asunto(s)
Anticuerpos/uso terapéutico , Lesiones Encefálicas/tratamiento farmacológico , Molécula 1 de Adhesión Intercelular/biosíntesis , Actividad Motora/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Animales , Anticuerpos/inmunología , Vasos Sanguíneos/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/fisiopatología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Quimiotaxis de Leucocito/efectos de los fármacos , Inmunoglobulina G/inmunología , Inmunoglobulina G/farmacología , Inmunohistoquímica , Molécula 1 de Adhesión Intercelular/inmunología , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Peroxidasa/efectos de los fármacos , Peroxidasa/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Brain Res ; 922(2): 173-9, 2001 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-11743947

RESUMEN

Activation of group I metabotropic glutamate receptors (mGluR) has been implicated in the pathophysiology of acute central nervous system injury. However, the relative roles of the two group I subtypes, mGluR1 or mGluR5, in such injury has not been well examined. We compared the effects of treatment with the newly developed, selective mGluR5 antagonist 2-methyl-6-phenylethynylpyridine (MPEP) and the selective mGluR5 agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) in a rat intraluminal filament model of temporary middle cerebral artery occlusion (MCAo). Rats were administered MPEP or CHPG i.c.v. beginning 15 or 135 min after induction of ischemia for 2 h. Infarct size was measured after either 22 or 70 h of reperfusion, and neurological function was quantified at 2, 24, 48 and 72 h. Treatment with MPEP or CHPG at 15 min reduced 24 h infarct volume by 61 and 44%, respectively. The neuroprotective effects were dose dependent. Delaying MPEP treatment until 135 min eliminated the neuroprotective effects. In other studies, using early MPEP treatment (15 min) at optimal doses, infarct volume was reduced by 44% at 72 h and this was correlated with significant neurological recovery. These data suggest that both MPEP and CHPG are neuroprotective when administered after focal cerebral ischemia. In separate, recent studies we found that although MPEP does act as an mGluR5 antagonist and blocks agonist induced phosphoinositide hydrolysis, it also serves as a non-competitive NMDA antagonist; in contrast, other results indicate that CHPG mediated neuroprotection may reflect anti-apoptotic activity. Therefore, both types of compounds may prove to have therapeutic potential for the treatment of stroke.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Corteza Cerebral/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/análogos & derivados , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Glicina/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Neuronas/metabolismo , Fenilacetatos/farmacología , Piridinas/farmacología , Ratas , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología
9.
J Neurosci ; 21(19): 7439-46, 2001 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-11567033

RESUMEN

Neuronal apoptosis plays an essential role in early brain development and contributes to secondary neuronal loss after acute brain injury. Recent studies have provided evidence that neuronal susceptibility to apoptosis induced by traumatic or ischemic injury decreases during brain development. However, the molecular mechanisms responsible for this age-dependent phenomenon remain unclear. Here we demonstrate that, during brain maturation, the potential of the intrinsic apoptotic pathway is progressively reduced and that such repression is associated with downregulation of apoptotic protease-activating factor-1 (Apaf-1) and caspase-3 gene expression. A similar decline in apoptotic susceptibility associated with downregulation of Apaf-1 expression as a function of developmental age was also found in cultured primary rat cortical neurons. Injury-induced cytochrome c-specific cleavage of caspase-9 followed by activation of caspase-3 in mature brain correlated with marked increases in Apaf-1 and caspase-3 mRNA and protein expression. These results suggest that differential expression of Apaf-1 and caspase-3 genes may underlie regulation of apoptotic susceptibility during brain development, as well as after acute injury to mature brain, through the intrinsic pathway of caspase activation.


Asunto(s)
Apoptosis , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Caspasas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Biosíntesis de Proteínas , Envejecimiento/metabolismo , Animales , Factor Apoptótico 1 Activador de Proteasas , Western Blotting , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Lesiones Encefálicas/patología , Caspasa 3 , Caspasas/genética , Supervivencia Celular/fisiología , Sistema Libre de Células , Células Cultivadas , Corteza Cerebral/química , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Grupo Citocromo c/metabolismo , Citosol/metabolismo , Nucleótidos de Desoxiadenina/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/fisiología , Masculino , Proteínas/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Heridas no Penetrantes
10.
J Neurotrauma ; 18(8): 839-47, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11526990

RESUMEN

Previous studies have shown that location and direction of injury may affect outcome in experimental models of traumatic brain injury. Significant variability in outcome data has also been noted in studies using the lateral fluid percussion brain injury model (FPI) in rats. In recent studies from our laboratory, we observed considerable variability in localization and severity of tissue damage as a function of small changes in craniotomy position. To further address this issue, we examined the relationship between craniotomy position and brain lesion size/location in rats subjected to moderate FPI (2.28 +/- 0.18 atmospheres). With placement of a 5-mm craniotomy adjacent to the sagittal suture, there was both ipsilateral and contralateral damage as detected at 3 weeks posttrauma using T2-weighted magnetic resonance imaging (MRI). The MRI lesions were generally restricted to the hippocampus and subcortical layers. Shifting of the craniotomy site laterally was associated with increased ipsilateral tissue damage and a greater cortical component that correlated with distance from the sagittal suture. In contrast, the contralateral MRI lesion did not change significantly in size or location unless the center of the craniotomy was placed more than 3.5 mm from the sagittal suture, under which condition contralateral damage could no longer be detected. Ipsilateral tissue damage as determined from the MRI scans was linearly correlated to motor outcome but not with cognitive outcome as assessed by the Morris Water Maze. We conclude that craniotomy position is critical in determining extent and location of tissue injury produced during the lateral FPI model in rats. Addressing such potential variability is essential for studies that address either injury mechanisms or therapeutic treatments.


Asunto(s)
Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Encéfalo/patología , Craneotomía , Animales , Conducta Animal , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley
11.
Mol Med ; 7(3): 205-16, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11471558

RESUMEN

BACKGROUND: Apoptosis plays an important pathophysiologic role in neuronal cell loss and associated neurologic deficits following traumatic brain injury (TBI). DNA fragmentation represents one of the characteristic biochemical features of neuronal apoptosis and is observed after experimental TBI. DFF45 and DFF40 are essential for DNA fragmentation in various models of apoptosis. MATERIALS AND METHODS: We used mice deficient in DFF45 and wild-type controls. Oligonucleosomal DNA fragmentation induced by TBI was analyzed using in vivo and in vitro assays. Expression and integrity of DFF45 and DFF40 proteins was assessed by Western analysis. Other outcome measurements included neurologic scoring, learning/memory tests, lesion volume measurements (MRI), and assessment of cell viability in vitro among others. RESULTS: We compared the effects of controlled cortical impact (CCI) trauma in DFF45 knockout mice and wild-type controls. Analysis of TBI-induced DNA fragmentation in brain cortex from wild-type and DFF45 knockout mice indicates that, although somewhat delayed, oligonucleosomal cleavage of DNA occurs after TBI in DFF45 knockout mice. DFF45 knockouts showed no significant differences in behavioral outcomes or lesion volumes after TBI as compared to wild-type controls. Using an in vitro reconstitution system, we also demonstrated that cleavage of DFF45 by caspase-3 is not sufficient for DNA fragmentation induced by protein extracts from rat brain cortex. We found that endonuclease activity induced in rat brain cortex following TBI depends on the presence of Mg2+ and Ca2+, but is not inhibited by Zn2+. Primary neuronal cultures from DFF45 knockouts failed to show DNA laddering in response to staurosporine, but did show prominent, albeit delayed, DNA fragmentation following treatment with etoposide. In contrast, primary neurons from wild-type animals demonstrated marked DNA fragmentation following treatment with staurosporine or etoposide. CONCLUSIONS: The results of this study suggest that, in addition to DFF45/40, other endonucleases may be essential for chromatin degradation during neuronal apoptosis in adult brain after TBI.


Asunto(s)
Lesiones Encefálicas/patología , Fragmentación del ADN , Animales , Proteínas Reguladoras de la Apoptosis , Western Blotting , Lesiones Encefálicas/genética , Técnicas de Cultivo , Eliminación de Gen , Imagen por Resonancia Magnética , Ratones , Ratones Noqueados , Proteínas/genética
12.
J Neurosci Res ; 65(1): 45-53, 2001 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-11433428

RESUMEN

beta-amyloid peptide (Abeta) has been implicated in the pathogenesis of Alzheimer disease and has been reported to induce apoptotic death in cell culture. Cysteine proteases, a family of enzymes known as caspases, mediate cell death in many models of apoptosis. Multiple caspases have been implicated in Abeta toxicity; these reports are conflicting. We show that treatment of cerebellar granule cells (CGC) with Abeta25-35 causes apoptosis associated with increased activity of caspases-2, -3 and -6. Selective inhibition of each of these three caspases provides significant protection against Abeta-mediated apoptosis. In contrast, no change in caspase-1 activity was seen after Abeta25-35 application, nor was inhibition of caspase-1 neuroprotective. Similar to CGC, cortical neuronal cultures treated with Abeta25-35 demonstrate increased caspase-3 activity but not caspase-1 activity. Furthermore, significant neuroprotection is elicited by selective inhibition of caspase-3 in cortical neurons administered Abeta25-35, whereas selective caspase-1 inhibition has no effect. Taken together, these findings indicate that multiple executioner caspases may be involved in neuronal apoptosis induced by Abeta.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Apoptosis/fisiología , Caspasas/metabolismo , Neuronas/citología , Fragmentos de Péptidos/toxicidad , Clorometilcetonas de Aminoácidos/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas Sanguíneas/farmacología , Caspasa 1/metabolismo , Caspasa 2 , Caspasa 3 , Caspasa 6 , Inhibidores de Caspasas , Células Cultivadas , Cerebelo/citología , Corteza Cerebral/citología , Cumarinas/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Neuronas/enzimología , Oligopéptidos/farmacología , Inhibidores de Proteasas/farmacología , Ratas , Ratas Sprague-Dawley , Clorometilcetona de Tosilfenilalanila/análogos & derivados , Clorometilcetona de Tosilfenilalanila/farmacología
13.
Exp Neurol ; 169(2): 449-60, 2001 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11358458

RESUMEN

Both ionotropic and metabotropic glutamate receptors have been implicated in the pathogenesis of neuronal injury. Activation of group I metabotropic glutamate receptors (mGluR) exacerbates neuronal cell death, whereas inhibition is neuroprotective. However, the mechanisms involved remain unknown. Activation of group I mGluR modulates multiple signal transduction pathways including stimulation of phosphoinositide hydrolysis, potentiation of NMDA receptor activity, and release of arachidonic acid. Here we demonstrate that whereas activation of group I mGluR by (S)-3,5-dihydroxyphenylglycine (DHPG) potentiates NMDA-induced currents and intracellular calcium increases in rat cortical neuronal cultures, partial effects of group I mGluR activation or inhibition on neuronal injury induced by oxygen-glucose deprivation remain despite NMDA receptor blockade. DHPG stimulation also increases basal arachidonic acid release from rat neuronal-glial cultures and potentiates injury-induced arachidonic acid release in these cultures. Thus, activation of group I mGluR may exacerbate neuronal injury through multiple mechanisms, which include positive modulation of NMDA receptors and enhanced release of arachidonic acid.


Asunto(s)
Ácido Araquidónico/metabolismo , Corteza Cerebral/fisiología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , N-Metilaspartato/farmacología , Neuroglía/fisiología , Neuronas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/fisiología , Células Cultivadas , Corteza Cerebral/citología , Técnicas de Cocultivo , Maleato de Dizocilpina/farmacología , Embrión de Mamíferos , Regulación de la Expresión Génica , Glucosa/metabolismo , Cinética , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , ARN Mensajero/análisis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
14.
Exp Neurol ; 167(2): 366-75, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11161625

RESUMEN

N-Tosyl-l-phenylalanyl chloromethyl ketone (TPCK), an inhibitor of chymotrypsin-like serine protease (CSP), prevents DNA fragmentation and apoptotic cell death in certain blood cell lines and was reported to reduce hippocampal neuronal damage caused by cerebral ischemia. We examined the role of CSP on recovery after lateral fluid percussion-induced traumatic brain injury (TBI) in rats, as well as on cell survival in various in vitro models of neuronal cell death. TBI caused significant time-dependent upregulation of CSP activity, but not trypsin-like serine protease activity in injured cortex. Intracerebroventricular administration of TPCK to rats after TBI did not significantly affect deficits of spatial learning but exacerbated motor dysfunction after injury. Moreover, TPCK did not prevent apoptotic neuronal cell death caused by serum/K(+) deprivation or by application of staurosporine or etoposide in cultured rat cerebellar granule cells, rat cortical neurons, or in the human neuroblastoma SH-SY5Y cell line. Instead, at doses from 10 to 100 microM, TPCK was cytotoxic in all cultures tested. Similar results were obtained in cultures treated with another CSP inhibitor, 3,4-dichloroisocoumarin. Cell death caused by CSP inhibitors was neither caspase-dependent nor associated with oligonucleosomal DNA fragmentation. Taken together, these data do not support a neuroprotective role for CSP inhibitors. Rather, they suggest that CSPs may serve an endogenous neuroprotective role, possibly by modulating necrotic cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Lesiones Encefálicas/tratamiento farmacológico , Neuronas/efectos de los fármacos , Inhibidores de Serina Proteinasa/administración & dosificación , Animales , Conducta Animal/efectos de los fármacos , Lesiones Encefálicas/patología , Caspasa 3 , Caspasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cumarinas/administración & dosificación , Medio de Cultivo Libre de Suero/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inyecciones Intraventriculares , Isocumarinas , Masculino , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Serina Endopeptidasas/metabolismo , Conducta Espacial/efectos de los fármacos , Estaurosporina/farmacología , Clorometilcetona Tosilisina/administración & dosificación , Clorometilcetona de Tosilfenilalanila/administración & dosificación , Heridas no Penetrantes
15.
Exp Neurol ; 167(2): 435-44, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11161632

RESUMEN

The effects of selective blockade of group I metabotropic glutamate receptor subtype 1 (mGluR1) on neuronal cell survival and post-traumatic recovery was examined using rat in vitro and in vivo trauma models. The selective mGluR1 antagonists (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), and (S)-(+)-alpha-amino-4-carboxy-2-methylbezeneacetic acid (LY367385) provided significant neuroprotection in rat cortical neuronal cultures subjected to mechanical injury, in both pretreatment or posttreatment paradigms. Administration of the antagonists also attenuated glutamate-induced neuronal cell death in the cultures. Coapplication of these antagonists with the N-methyl-d-aspartate (NMDA) receptor antagonist (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) had additive neuroprotective effects in glutamate injured cultures. Intracerebroventricular administration of AIDA to rats markedly improved recovery from motor dysfunction after lateral fluid percussion induced traumatic brain injury (TBI). Treatment with mGluR1 antagonists also significantly reduced lesion volumes in rats after TBI, as evaluated by MRI. It appears that these compounds mediate their neuroprotective effect through an mGluR1 antagonist action, as demonstrated by inhibition of agonist induced phosphoinositide hydrolysis in our in vitro system. Moreover, AIDA, CPCCOEt, and LY367385, at concentrations shown to be neuroprotective, had no significant effects on the steady state NMDA evoked whole cell current. Taken together, these data suggest that modulation of mGluR1 activity may have substantial therapeutic potential in brain injury.


Asunto(s)
Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Glicina/análogos & derivados , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Animales , Benzoatos/administración & dosificación , Lesiones Encefálicas/inducido químicamente , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cromonas/farmacología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Sinergismo Farmacológico , Potenciales Evocados/efectos de los fármacos , Glicina/administración & dosificación , Glicina/farmacología , Técnicas In Vitro , Indanos/administración & dosificación , Inyecciones Intraventriculares , Masculino , Modelos Biológicos , Fármacos Neuroprotectores/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Heridas no Penetrantes
16.
J Pharmacol Exp Ther ; 296(1): 41-7, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11123360

RESUMEN

The effect of selective group I metabotropic glutamate receptor subtype 5 (mGluR5) antagonists 2-methyl-6-(phenylethynyl)-pyridine (MPEP) and (E)-2-methyl-6-(2-phenylethenyl)-pyridine (SIB-1893) on neuronal cell survival and post-traumatic recovery was examined using rat in vitro and in vivo trauma models. Treatment with MPEP and SIB-1893 showed significant neuroprotective effects in rat cortical neuronal cultures subjected to mechanical injury. Application of the antagonists also attenuated glutamate- and N-methyl-D-aspartate (NMDA)-induced neuronal cell death in vitro. Intracerebroventricular administration of MPEP to rats markedly improved motor recovery and reduced deficits of spatial learning after lateral fluid percussion-induced traumatic brain injury. Lesion volumes as assessed by magnetic resonance imaging were also substantially reduced by MPEP treatment. Although we show that MPEP acts as a potent mGluR5 antagonist in our culture system, where it completely blocks agonist-induced phosphoinositide hydrolysis, electrophysiological and pharmacological studies indicate that MPEP and SIB-1893 also inhibit NMDA receptor activity at higher concentrations that are neuroprotective. Taken together, these data suggest that MPEP and SIB-1893 may have therapeutic potential in brain injury, although the mechanisms of neuroprotective action for these drugs may reflect their ability to modulate NMDA receptor activity.


Asunto(s)
Lesiones Encefálicas/patología , Antagonistas de Aminoácidos Excitadores/farmacología , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Piridinas/farmacología , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/psicología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Electrofisiología , Ácido Glutámico/toxicidad , Hidrólisis , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , N-Metilaspartato/toxicidad , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositoles/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5
17.
Ment Retard Dev Disabil Res Rev ; 7(4): 235-48, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11754517

RESUMEN

Perinatal brain injury following trauma, hypoxia, and/or ischemia represents a substantial cause of pediatric disabilities including mental retardation. Such injuries lead to neuronal cell death through either necrosis or apoptosis. Numerous in vivo and in vitro studies implicate ionotropic (iGluRs) and metabotropic (mGluRs) glutamate receptors in the modulation of such cell death. Expression of glutamate receptors changes as a function of developmental age, with substantial implications for understanding mechanisms of post-injury cell death and its potential treatment. Recent findings suggest that the developing brain is more susceptible to apoptosis after injury and that such caspase mediated cell death may be exacerbated by treatment with N-methyl-D-aspartate receptor antagonists. Moreover, group I metabotropic glutamate receptors appear to have opposite effects on necrotic and apoptotic cell death. Understanding the relative roles of glutamate receptors in post-traumatic or post-ischemic cell death as a function of developmental age may lead to novel targeted approaches to the treatment of pediatric brain injury.


Asunto(s)
Lesiones Encefálicas/metabolismo , Receptores de Glutamato/metabolismo , Factores de Edad , Apoptosis/fisiología , Encéfalo/patología , Canales de Calcio/metabolismo , Caspasas/metabolismo , Humanos , Recién Nacido , Necrosis , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Índice de Severidad de la Enfermedad
18.
Mol Neurobiol ; 24(1-3): 131-44, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11831549

RESUMEN

Recent studies have suggested a role for neuronal apoptosis in cell loss following acute CNS injury as well as in chronic neurodegeneration. Caspases are a family of cysteine requiring aspartate proteases with sequence similarity to Ced-3 protein of Caenorhabditis elegans. These proteases have been found to contribute significantly to the morphological and biochemical manifestations of apoptotic cell death. Caspases are translated as inactive zymogens and become active after specific cleavage. Of the 14 identified caspases, caspase-3 appears to be the major effector of neuronal apoptosis induced by a variety of stimuli. A role for caspase-3 in injury-induced neuronal cell death has been established using semispecific peptide caspase inhibitors. This article reviews the current literature relating to pathways regulating caspase activation in apoptosis associated with acute and chronic neurodegeneration, and suggests that identification of critical upstream caspase regulatory mechanisms may permit more effective treatment of such disorders.


Asunto(s)
Apoptosis/fisiología , Lesiones Encefálicas/patología , Caspasas/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Activación Enzimática , Humanos
19.
Br J Pharmacol ; 131(7): 1429-37, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11090117

RESUMEN

1. The metabotropic glutamate receptors (mGluRs) are a family of G-protein linked receptors that can be divided into three groups (group I, II and III). A number of studies have implicated group I mGluR activation in acute neuronal injury, but until recently it was not possible to pharmacologically differentiate the roles of the two individual subunits (mGluR1 and mGluR5) in this group. 2. We investigated the role of mGluR5 in acute NMDA and glutamate mediated neurodegeneration in cultured rat cortical cells using the mGluR5 antagonists MPEP and SIB-1893, and found that they provide significant protection at concentrations of 20 or 200 microM. 3. These compounds act as effective mGluR5 antagonists in our cell culture system, as indicated by the ability of SIB-1893 to prevent phosphoinositol hydrolysis induced by the specific mGluR5 agonist, (RS)-2-chloro-5-hydroxyphenylglycine (CHPG). 4. However, they also significantly reduce NMDA evoked current recorded from whole cells voltage clamped at -60 mV, and significantly decrease the duration of opening of NMDA channels recorded in the outside out patch configuration. 5. This suggests that although MPEP and SIB-1893 are effective mGluR5 antagonists, they also act as noncompetitive NMDA receptor antagonists. Therefore, the neuroprotective effects of these compounds are most likely mediated through their NMDA receptor antagonist action, and caution should be exercised when drawing conclusions about the roles of mGluR5 based on their use.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Glicina/análogos & derivados , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Piridinas/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Electrofisiología , Agonistas de Aminoácidos Excitadores/farmacología , Femenino , Feto , Ácido Glutámico/farmacología , Glicina/farmacología , Hidrólisis/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Fenilacetatos/farmacología , Fosfatidilinositoles/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
20.
J Neurotrauma ; 17(10): 811-29, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11063050

RESUMEN

Caspases are a family of mammalian proteases related to the ced-3 gene of Caenorhabditis elegans. They mediate many of the morphological and biochemical features of apoptosis, including structural dismantling of cell bodies and nuclei, fragmentation of genomic DNA, destruction of regulatory proteins, and propagation of other pro-apoptotic molecules. Based on their substrate specificities and DNA sequence homologies, the 14 currently identified caspases may be divided into three groups: apoptotic initiators, apoptotic executioners, and inflammatory mediators. Caspases are activated through two principal pathways, known as the "extrinsic pathway," which is initiated by cell surface death receptor ligation, and the intrinsic pathway, which arises from mitochondria. Endogenous inhibitors, such as the inhibitors of apoptosis (IAP) family, modulate caspase activity at various points within these pathways. Upon activation, caspases appear to play an important role in sequelae of traumatic brain injury, spinal cord injury, and cerebral ischemia. In addition, they may also play a role in mediating cell death in chronic neurodegenerative conditions such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. This article reviews the current literature on the role of caspases in acute and chronic CNS injury, and provides evidence for the potential therapeutic use of caspase inhibitors in the setting of these conditions.


Asunto(s)
Apoptosis/fisiología , Lesiones Encefálicas/metabolismo , Caspasas/metabolismo , Degeneración Nerviosa/metabolismo , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Animales , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Humanos , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...