Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386149

RESUMEN

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Asunto(s)
Reproducción , Árboles , Fertilidad , Semillas , Saciedad
2.
Environ Microbiol ; 24(12): 6184-6199, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35799501

RESUMEN

Soil microbial community composition routinely correlates with pH, reflecting both direct pH effects on microbial physiology and long-term biogeochemical feedbacks. We used two watershed-scale liming experiments to identify short- (2 years) and long-term (25 years) changes in the structure and function of bacterial and fungal communities in organic horizons (Oe and Oa ) of acid forest soils. Liming increased soil pH, extractable calcium, and soil carbon stocks, reduced biomass-specific respiration, and caused major changes in the soil microbiome in the short and long term. More taxa responded to liming in the short term (70%) than in the long term (30%), with most showing consistent directional responses at both sites. The ratio of change in relative abundance between limed and reference sites was twofold higher at the long than the short-term site, indicating that the effects of liming grew over time. Liming impacts were most pronounced in fungi, as steep declines of dominant ectomycorrhizal fungi (Cenococcum and Russula) occurred at both sites. Liming favoured neutrophilic bacteria over acidophilic populations according to estimated environmental pH optima. Collectively, these results demonstrate that a liming-induced change of one pH unit has an immediate and persistent effect on the structure and function of microbial communities in acid forest soils. The corresponding suppression of respiration indicates that anthropogenic alterations of soil pH, as driven by acid deposition or liming, can affect forest floor C stocks due to pH-driven shifts in community structure.


Asunto(s)
Microbiota , Micorrizas , Suelo/química , Concentración de Iones de Hidrógeno , Microbiología del Suelo , Carbono , Bosques , Bacterias/genética
3.
Glob Chang Biol ; 28(18): 5399-5415, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35770362

RESUMEN

Microbial community structure and function regularly covary with soil pH, yet effects of these interactions on soil carbon are rarely tested experimentally within natural ecosystems. We investigated the enduring (25 year) impacts of liming on microbial community structure and decomposition at an acidic northern hardwood forest, where experimental liming increased pH one unit and surprisingly doubled the organic carbon stocks of the forest floor. We show that this increase in carbon storage corresponded with restructuring of the bacterial and fungal communities that drive decomposition. In the Oe horizon, liming reduced the activities of five extracellular enzymes that mediate decomposition, while the Oa horizon showed an especially large (64%) reduction in the activity of a sixth, peroxidase, which is an oxidative enzyme central to lignocellulose degradation. Decreased enzyme activities corresponded with loss of microbial taxa important for lignocellulose decay, including large reductions in the dominant ectomycorrhizal genera Russula and Cenococcum, saprotrophic and wood decaying fungi, and Actinobacteria (Thermomonosporaceae). These results demonstrate the importance of pH as a dominant regulator of microbial community structure and illustrate how changes to this structure can produce large, otherwise unexpected increases in carbon storage in forest soils.


Asunto(s)
Microbiota , Micorrizas , Bacterias/metabolismo , Carbono/metabolismo , Bosques , Hongos/metabolismo , Micorrizas/metabolismo , Suelo/química , Microbiología del Suelo
4.
Nat Commun ; 13(1): 2381, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501313

RESUMEN

The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.


Asunto(s)
Bosques , Semillas , Fertilidad , Reproducción , Semillas/fisiología , Árboles
5.
PeerJ ; 10: e13193, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35474687

RESUMEN

Foliar chemistry can be useful for diagnosing soil nutrient availability and plant nutrient limitation. In northern hardwood forests, foliar responses to nitrogen (N) addition have been more often studied than phosphorus (P) addition, and the interactive effects of N and P addition have rarely been described. In the White Mountains of central New Hampshire, plots in ten forest stands of three age classes across three sites were treated annually beginning in 2011 with 30 kg N ha-1 y-1 or 10 kg P ha-1 y-1 or both or neither-a full factorial design. Green leaves of American beech (Fagus grandifolia Ehrh.), pin cherry (Prunus pensylvanica L.f.), red maple (Acer rubrum L.), sugar maple (A. saccharum Marsh.), white birch (Betula papyrifera Marsh.), and yellow birch (B. alleghaniensis Britton) were sampled pre-treatment and 4-6 years post-treatment in two young stands (last cut between 1988-1990), four mid-aged stands (last cut between 1971-1985) and four mature stands (last cut between 1883-1910). In a factorial analysis of species, stand age class, and nutrient addition, foliar N was 12% higher with N addition (p < 0.001) and foliar P was 45% higher with P addition (p < 0.001). Notably, P addition reduced foliar N concentration by 3% (p = 0.05), and N addition reduced foliar P concentration by 7% (p = 0.002). When both nutrients were added together, foliar P was lower than predicted by the main effects of N and P additions (p = 0.08 for N × P interaction), presumably because addition of N allowed greater use of P for growth. Foliar nutrients did not differ consistently with stand age class (p ≥ 0.11), but tree species differed (p ≤ 0.01), with the pioneer species pin cherry having the highest foliar nutrient concentrations and the greatest responses to nutrient addition. Foliar calcium (Ca) and magnesium (Mg) concentrations, on average, were 10% (p < 0.001) and 5% lower (p = 0.01), respectively, with N addition, but were not affected by P addition (p = 0.35 for Ca and p = 0.93 for Mg). Additions of N and P did not affect foliar potassium (K) concentrations (p = 0.58 for N addition and p = 0.88 for P addition). Pre-treatment foliar N:P ratios were high enough to suggest P limitation, but trees receiving N (p = 0.01), not P (p = 0.64), had higher radial growth rates from 2011 to 2015. The growth response of trees to N or P addition was not explained by pre-treatment foliar N, P, N:P, Ca, Mg, or K.


Asunto(s)
Acer , Árboles , Nitrógeno/farmacología , Fósforo/análisis , Bosques , Calcio de la Dieta , Fertilización
6.
Ecol Lett ; 25(6): 1471-1482, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460530

RESUMEN

Lack of tree fecundity data across climatic gradients precludes the analysis of how seed supply contributes to global variation in forest regeneration and biotic interactions responsible for biodiversity. A global synthesis of raw seedproduction data shows a 250-fold increase in seed abundance from cold-dry to warm-wet climates, driven primarily by a 100-fold increase in seed production for a given tree size. The modest (threefold) increase in forest productivity across the same climate gradient cannot explain the magnitudes of these trends. The increase in seeds per tree can arise from adaptive evolution driven by intense species interactions or from the direct effects of a warm, moist climate on tree fecundity. Either way, the massive differences in seed supply ramify through food webs potentially explaining a disproportionate role for species interactions in the wet tropics.


Asunto(s)
Bosques , Árboles , Biodiversidad , Clima , Fertilidad , Semillas
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34983867

RESUMEN

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Asunto(s)
Cambio Climático , Árboles/fisiología , Ecosistema , Fertilidad/fisiología , Geografía , América del Norte , Incertidumbre
9.
Environ Entomol ; 50(4): 803-813, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-33942871

RESUMEN

The hemlock woolly adelgid (Hemiptera: Adelgidae Adelges tsugae Annand) poses a serious threat to hemlocks in eastern North America, and ongoing research is focused on the identification and development of biological controls to protect and manage hemlock resources. Three predators native to the Pacific Northwest of North America that have been the focus of much research are Leucopis argenticollis (Zetterstedt), Leucopis piniperda (Malloch) (Diptera: Chamaemyiidae), and Laricobius nigrinus (Fender) (Coleoptera: Derodontidae). This study addresses the knowledge gap of adult Leucopis spp. emergence patterns, with comparisons to the timing of larval La. nigrinus drop for pupation. Adult Leucopis spp. emergence was observed in the lab from field-collected, adelgid-infested foliage from Washington state in 2019 and 2020. Adult Leucopis spp. were collected daily as they emerged from foliage collections and identified to species using morphological features; a subset was validated using DNA barcoding. Accumulated heating degree days were calculated to compare a standardized emergence timing across collections made at different locations and temperature regimes. The abundance of the two Leucopis spp. and of the combined Leucopis spp. and La. nigrinus varied among sites and years, and no species was consistently more abundant than the other. Evaluations of seasonal emergence trends of the three species determine the predator complex behaves in a temporally stratified and predictable way. Emergence of adult Le. argenticollis was observed first, followed by La. nigrinus larval drop, with Le. piniperda emerging at the end of larval drop, and finally a second emergence of Le. argenticollis.


Asunto(s)
Escarabajos , Dípteros , Hemípteros , Cicutas (Apiáceas) , Animales , Larva , Conducta Predatoria , Tsuga , Washingtón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA