Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Neurobiol Pain ; 14: 100136, 2023.
Article En | MEDLINE | ID: mdl-38099276

The artemin-GFRα3 signaling pathway has been implicated in various painful conditions including migraine, cold allodynia, hyperalgesia, inflammatory bone pain, and mouse knees contain GFRα3-immunoreactive nerve endings. We developed high affinity mouse (REGN1967) and human (REGN5069) GFRα3-blocking monoclonal antibodies and, following in vivo evaluations in mouse models of chronic joint pain (osteoarthritic-like and inflammatory), conducted a first-in-human phase 1 pharmacokinetics (PK) and safety trial of REGN5069 (NCT03645746) in healthy volunteers, and a phase 2 randomized placebo-controlled efficacy and safety trial of REGN5069 (NCT03956550) in patients with knee osteoarthritis (OA) pain. In three commonly used mouse models of chronic joint pain (destabilization of the medial meniscus, intra-articular monoiodoacetate, or Complete Freund's Adjuvant), REGN1967 and REGN5069 attenuated evoked behaviors including tactile allodynia and thermal hyperalgesia without discernably impacting joint pathology or inflammation, prompting us to further evaluate REGN5069 in humans. In the phase 1 study in healthy subjects, the safety profiles of single doses of REGN5069 up to 3000 mg (intravenous) or 600 mg (subcutaneous) were comparable to placebo; PK were consistent with a monoclonal antibody exhibiting target-mediated disposition. In the phase 2 study in patients with OA knee pain, two doses of REGN5069 (100 mg or 1000 mg intravenous every 4 weeks) for 8 weeks failed to achieve the 12-week primary and secondary efficacy endpoints relative to placebo. In addition to possible differences in GFRα3 biology between mice and humans, we highlight here differences in experimental parameters that could have contributed to a different profile of efficacy in mouse models versus human OA pain. Additional research is required to more fully evaluate any potential role of GFRα3 in human pain.

2.
Mol Cancer Ther ; 13(5): 1345-55, 2014 May.
Article En | MEDLINE | ID: mdl-24634416

EGFR blocking antibodies are approved for the treatment of colorectal cancer and head and neck squamous cell carcinoma (HNSCC). Although ERBB3 signaling has been proposed to limit the effectiveness of EGFR inhibitors, the underlying molecular mechanisms are not fully understood. To gain insight into these mechanisms, we generated potent blocking antibodies against ERBB3 (REGN1400) and EGFR (REGN955). We show that EGFR and ERBB3 are coactivated in multiple HNSCC cell lines and that combined blockade of EGFR and ERBB3 inhibits growth of these cell lines more effectively than blockade of either receptor alone. Blockade of EGFR with REGN955 strongly inhibited activation of ERK in HNSCC cell lines, whereas blockade of ERBB3 with REGN1400 strongly inhibited activation of Akt; only the combination of the 2 antibodies blocked both of these essential downstream pathways. We used a HER2 blocking antibody to show that ERBB3 phosphorylation in HNSCC and colorectal cancer cells is strictly dependent on association with HER2, but not EGFR, and that neuregulin 1 activates ERBB3/HER2 signaling to reverse the effect of EGFR blockade on colorectal cancer cell growth. Finally, although REGN1400 and REGN955 as single agents slowed the growth of HNSCC and colorectal cancer xenografts, the combination of REGN1400 plus REGN955 caused significant tumor regression. Our results indicate that activation of the Akt survival pathway by ERBB3/HER2 limits the effectiveness of EGFR inhibition, suggesting that REGN1400, which is currently in a phase I clinical trial, could provide benefit when combined with EGFR blocking antibodies.


Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , ErbB Receptors/antagonists & inhibitors , Head and Neck Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Animals , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Disease Models, Animal , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Humans , Mice , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-3/antagonists & inhibitors , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
...