Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Am Chem Soc ; 142(25): 11006-11012, 2020 06 24.
Article En | MEDLINE | ID: mdl-32476412

Nitrogenase is a key player in the global nitrogen cycle, as it catalyzes the reduction of dinitrogen into ammonia. The active site of the nitrogenase MoFe protein corresponds to a [MoFe7S9C-(R)-homocitrate] species designated FeMo-cofactor, whose biosynthesis and insertion requires the action of over a dozen maturation proteins provided by the NIF (for NItrogen Fixation) assembly machinery. Among them, the radical SAM protein NifB plays an essential role, concomitantly inserting a carbide ion and coupling two [Fe4S4] clusters to form a [Fe8S9C] precursor called NifB-co. Here we report on the X-ray structure of NifB from Methanotrix thermoacetophila at 1.95 Å resolution in a state pending the binding of one [Fe4S4] cluster substrate. The overall NifB architecture indicates that this enzyme has a single SAM binding site, which at this stage is occupied by cysteine residue 62. The structure reveals a unique ligand binding mode for the K1-cluster involving cysteine residues 29 and 128 in addition to histidine 42 and glutamate 65. The latter, together with cysteine 62, belongs to a loop inserted in the active site, likely protecting the already present [Fe4S4] clusters. These two residues regulate the sequence of events, controlling SAM dual reactivity and preventing unwanted radical-based chemistry before the K2 [Fe4S4] cluster substrate is loaded into the protein. The location of the K1-cluster, too far away from the SAM binding site, supports a mechanism in which the K2-cluster is the site of methylation.


Archaeal Proteins/chemistry , Oxidoreductases/chemistry , Archaeal Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Cysteine/chemistry , Glutamic Acid/chemistry , Histidine/chemistry , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Methanosarcinales/enzymology , Models, Chemical , Oxidoreductases/metabolism , Protein Binding , Protein Conformation , S-Adenosylmethionine/metabolism
...