Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Med Genet ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38955476

RESUMEN

BACKGROUND: Transport protein particle (TRAPP) is a multiprotein complex that functions in localising proteins to the Golgi compartment. The TRAPPC11 subunit has been implicated in diseases affecting muscle, brain, eye and to some extent liver. We present three patients who are compound heterozygotes for a missense variant and a structural variant in the TRAPPC11 gene. TRAPPC11 structural variants have not yet been described in association with a disease. In order to reveal the estimated genesis of identified structural variants, we performed sequencing of individual breakpoint junctions and analysed the extent of homology and the presence of repetitive elements in and around the breakpoints. METHODS: Biochemical methods including isoelectric focusing on serum transferrin and apolipoprotein C-III, as well as mitochondrial respiratory chain complex activity measurements, were used. Muscle biopsy samples underwent histochemical analysis. Next-generation sequencing was employed for identifying sequence variants associated with neuromuscular disorders, and Sanger sequencing was used to confirm findings. RESULTS: We suppose that non-homologous end joining is a possible mechanism of deletion origin in two patients and non-allelic homologous recombination in one patient. Analyses of mitochondrial function performed in patients' skeletal muscles revealed an imbalance of mitochondrial metabolism, which worsens with age and disease progression. CONCLUSION: Our results contribute to further knowledge in the field of neuromuscular diseases and mutational mechanisms. This knowledge is important for understanding the molecular nature of human diseases and allows us to improve strategies for identifying disease-causing mutations.

2.
Clin Genet ; 104(5): 542-553, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526466

RESUMEN

Limb girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of muscular dystrophies. The study presents an overview of molecular characteristics of a large cohort of LGMD patients who are representative of the Czech LGMD population. We present 226 LGMD probands in which 433 mutant alleles carrying 157 different variants with a supposed pathogenic effect were identified. Fifty-four variants have been described only in the Czech LGMD population so far. LGMD R1 caplain3-related is the most frequent subtype of LGMD involving 53.1% of patients with genetically confirmed LGMD, followed by LGMD R9 FKRP-related (11.1%), and LGMD R12 anoctamin5-related (7.1%). If we consider identified variants, then all but five were small-scale variants. One large gene deletion was identified in the LAMA2 gene and two deletions in each of CAPN3 and SGCG. We performed comparison our result with other published studies. The results obtained in the Czech LGMD population clearly differ from the outcome of other LGMD populations in two aspects-we have a more significant proportion of patients with LGMD R1 calpain3-related and a smaller proportion of LGMD R2 dysferlin-related.

3.
Hum Mutat ; 43(10): 1347-1353, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35731190

RESUMEN

The investigated intronic CAPN3 variant NM_000070.3:c.1746-20C>G occurs in the Central and Eastern Europe with a frequency of >1% and there are conflicting interpretations on its pathogenicity. We collected data on 14 patients carrying the CAPN3 c.1746-20C>G variant in trans position with another CAPN3 pathogenic/likely pathogenic variant. The patients compound heterozygous for the CAPN3 c.1746-20C>G variant presented a phenotype consistent with calpainopathy of mild/medium severity. This variant is most frequent in the North/West regions of Russia and may originate from that area. Molecular studies revealed that different splicing isoforms are produced in the muscle. We hypothesize that c.1746-20C>G is a hypomorphic variant with a reduction of RNA and protein expression and only individuals having a higher ratio of abnormal isoforms are affected. Reclassification of the CAPN3 variant c.1746-20C>G from variant with a conflicting interpretation of pathogenicity to hypomorphic variant explains many unidentified cases of limb girdle muscular dystrophy R1 calpain 3-related in Eastern and Central Europe.


Asunto(s)
Calpaína , Proteínas Musculares , Distrofia Muscular de Cinturas , Calpaína/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Mutación , Empalme del ARN
5.
Epilepsy Behav ; 128: 108564, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065395

RESUMEN

AIM: The primary goal was to determine the yield of next-generation sequencing (NGS) epilepsy gene panels used for epilepsy etiology diagnosing using a multidisciplinary approach and to demonstrate the importance of genotype-phenotype correlations. The secondary goal was to evaluate the application of precision medicine in selected patients. METHODS: This single-center retrospective study included a total of 175 patients (95 males and 80 females) aged 0-19 years. They were examined between 2015 and 2020 using an NGS epilepsy gene panel (270 genes). A bioinformatic analysis was performed including copy number variation identification. Thorough genotype-phenotype correlation was performed. RESULTS: Out of 175 patients, described pathogenic variants or novel variants with clear pathogenic impact were identified in 30 patients (17.14%). Genotype-phenotype correlations and parental DNA analysis were performed, and genetic diagnosis was confirmed on the basis of the results in another 16 out of 175 patients (9.14%). The diagnostic yield of our study increased from 30 to 46 patients (by 53.33%) by the precise genotype-phenotype correlation. INTERPRETATION: We emphasize a complex genotype-phenotype correlation and a multidisciplinary approach in evaluating the results of the NGS epilepsy gene panel, which enables the most accurate genetic diagnosis and correct interpretation of results.


Asunto(s)
Variaciones en el Número de Copia de ADN , Epilepsia , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Estudios de Asociación Genética , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Mutación , Fenotipo , Estudios Retrospectivos
6.
Cesk Patol ; 57(3): 150-153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34551563

RESUMEN

Neuromuscular diseases (NMDs) are a clinically and genetically heterogeneous group of diseases. Currently, 608 genes associated with different types of NMD have been identified. Most of these diseases are rare with a very low prevalence. Advance in the identification of genes associated with NMD can be attributed to technological development in an area of next generation sequencing (NGS) and the affordability of this methodical approach. NGS applications can be divided into analysis of (a) a selected set of genes, (b) an exom, and (c) a genome. The identification of pathogenic variants leads to a significant shift in the understanding of the etiopathogenesis of the disease, allows the prediction of the course of the disease, or its targeted treatment, which may be specific for individual types of NMD or even for particular pathogenic sequence variants.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Neuromusculares , Humanos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética
7.
Diagnostics (Basel) ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071626

RESUMEN

BACKGROUND: Alagille syndrome (ALGS) is a highly variable multisystem disorder inherited in an autosomal dominant pattern with incomplete penetration. The disorder is caused by mutations in the JAG1 gene, only rarely in the NOTCH2 gene, which gives rise to malformations in multiple organs. Bile duct paucity is the main characteristic feature of the disease. METHODS: Molecular-genetic examination of genes JAG1 and NOTCH2 in four probands of Czech origin who complied with the diagnostic criteria of ALGS was performed using targeted next-generation sequencing of genes JAG1 and NOTCH2. Segregation of variants in a family was assessed by Sanger sequencing of parental DNA. RESULTS: Mutations in the JAG1 gene were confirmed in all four probands. We identified two novel mutations: c.3189dupG and c.1913delG. Only in one case, the identified JAG1 mutation was de novo. None of the parents carrying JAG1 pathogenic mutation was diagnosed with ALGS. CONCLUSION: Diagnosis of the ALGS is complicated due to the absence of clear genotype-phenotype correlations and the extreme phenotypic variability in the patients even within the same family. This fact is of particular importance in connection to genetic counselling and prenatal genetic testing.

8.
Artículo en Inglés | MEDLINE | ID: mdl-33087941

RESUMEN

Congenital ichthyoses are a very heterogeneous group of diseases manifested by dry, rough and scaling skin. In all forms of ichthyoses, the skin barrier is damaged to a certain degree. Congenital ichthyoses are caused by various gene mutations. Clinical manifestations of the individual types vary as the patient ages. Currently, the diagnosis of congenital ichthyoses is based on molecular analysis, which also allows a complete genetic counseling and genetic prevention. It is appropriate to refer the patients to specialized medical centers, where the cooperation of a neonatologist, a pediatric dermatologist, a geneticist and other specialists is ensured.


Asunto(s)
Predisposición Genética a la Enfermedad , Eritrodermia Ictiosiforme Congénita/clasificación , Eritrodermia Ictiosiforme Congénita/diagnóstico , Eritrodermia Ictiosiforme Congénita/genética , Eritrodermia Ictiosiforme Congénita/terapia , Biología Molecular , Mutación , Adolescente , Factores de Edad , Niño , Preescolar , Femenino , Humanos , Ictiosis Ligada al Cromosoma X/diagnóstico , Ictiosis Ligada al Cromosoma X/genética , Ictiosis Ligada al Cromosoma X/fisiopatología , Ictiosis Ligada al Cromosoma X/terapia , Lactante , Recién Nacido , Masculino , Evaluación de Síntomas
9.
Front Genet ; 11: 691, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695144

RESUMEN

Background: Pathogenic variants in the low density lipoprotein receptor gene are associated with familial hypercholesterolemia. Some of these variants can result in incorrect folding of the LDLR protein, which is then accumulated inside the cell and cannot fulfill its function to internalize LDL particles. We analyzed the functional impact of 10 LDLR variants localized in the beta-propeller of epidermal growth factor precursor homology domain. The experimental part of the work was complemented by a structural analysis on the basis of 3D LDLR protein structure. Methods: T-Rex Chinese hamster ovary cells transfected with the human LDLR gene were used for live cell imaging microscopy, flow cytometry, and qRT-PCR analysis. Results: Our results showed that the analyzed LDLR protein variants can be divided into three groups. (1) The variants buried inside the 3D protein structure expressing proteins accumulated in the endoplasmic reticulum (ER) with no or reduced plasma membrane localization and LDL particle internalization, and associated with an increased gene expression of ER-resident chaperones. (2) The variants localized on the surface of 3D protein structure with slightly reduced LDLR plasma membrane localization and LDL particle internalization, and associated with no increased mRNA level of ER-resident chaperones. (3) The variants localized on the surface of the 3D protein structure but expressing proteins with cell responses similar to the group 1. Conclusion: All analyzed LDLR variants have been evaluated as pathogenic but with different effects on protein localization and function, and expression of genes associated with ER stress.

10.
J Neuromuscul Dis ; 7(2): 153-166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32039858

RESUMEN

BACKGROUND: Extensive genetic screening results in the identification of thousands of rare variants that are difficult to interpret. Because of its sheer size, rare variants in the titin gene (TTN) are detected frequently in any individual. Unambiguous interpretation of molecular findings is almost impossible in many patients with myopathies or cardiomyopathies. OBJECTIVE: To refine the current classification framework for TTN-associated skeletal muscle disorders and standardize the interpretation of TTN variants. METHODS: We used the guidelines issued by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) to re-analyze TTN genetic findings from our patient cohort. RESULTS: We identified in the classification guidelines three rules that are not applicable to titin-related skeletal muscle disorders; six rules that require disease-/gene-specific adjustments and four rules requiring quantitative thresholds for a proper use. In three cases, the rule strength need to be modified. CONCLUSIONS: We suggest adjustments are made to the guidelines. We provide frequency thresholds to facilitate filtering of candidate causative variants and guidance for the use and interpretation of functional data and co-segregation evidence. We expect that the variant classification framework for TTN-related skeletal muscle disorders will be further improved along with a better understanding of these diseases.


Asunto(s)
Cardiomiopatías , Conectina/genética , Enfermedades Musculares , Guías de Práctica Clínica como Asunto/normas , Cardiomiopatías/clasificación , Cardiomiopatías/congénito , Cardiomiopatías/genética , Humanos , Enfermedades Musculares/clasificación , Enfermedades Musculares/congénito , Enfermedades Musculares/genética
11.
DNA Res ; 26(4): 341-352, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31230075

RESUMEN

Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Mutación , Motivos de Nucleótidos , Islas de CpG , ADN/genética , Humanos
12.
Orphanet J Rare Dis ; 14(1): 92, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046801

RESUMEN

Inherited ichthyoses belong to a large and heterogeneous group of mendelian disorders of cornification, and can be distinguished by the quality and distribution of scaling and hyperkeratosis, by other dermatologic and extracutaneous involvement, and by inheritance. We present the genetic analysis results of probands with X-linked ichthyosis, autosomal recessive congenital ichthyosis, keratinopathic ichthyosis, and a patient with Netherton syndrome. Genetic diagnostics was complemented by in silico missense variant analysis based on 3D protein structures and commonly used prediction programs to compare the yields of these two approaches to each other. This analysis revealed various structural defects in proteins coded by mutated genes while no defects were associated with known polymorphisms. Two patients with pathogenic variants in the ABCA12 gene have a premature termination codon mutation on one allele and a silent variant on the second. The silent variants c.69G > A and c.4977G > A are localised in the last nucleotide of exon 1 and exon 32, respectively, and probably affect mRNA splicing. The phenotype of both patients is very severe, including a picture harlequin foetus after birth; later (at 3 and 6 years of age, respectively) ectropin, eclabion, generalised large polygonal scaling and erythema.


Asunto(s)
Ictiosis/etiología , Transportadoras de Casetes de Unión a ATP/genética , Codón sin Sentido/genética , República Checa , Predisposición Genética a la Enfermedad/genética , Humanos , Ictiosis/genética , Fenotipo
13.
Prague Med Rep ; 119(4): 156-164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30779700

RESUMEN

Hajdu-Cheney syndrome (HCS) is a rare multi-system disease with autosomal dominant inheritance and skeletal involvement, resulting mostly in craniofacial dysmorphy with mid-face hypoplasia, dental anomalies, short stature, scoliosis, shortening of the digits and nail beds, acro-osteolysis and osteoporosis. We report the progression of clinical and radiographic findings in five patients with Hajdu-Cheney syndrome from two families. A custom capture array designed to capture exons and adjacent intron sequences of 230 selected genes were used for molecular analyses, and the pathogenic variants identified were confirmed by PCR and Sanger sequencing. In both families we observed age-dependent changes in the disease, with a progression of pain in older patients, a shortening of digits and nail beds on both the hands and feet, kyphoscoliosis and the persistence of Wormian bones in lambdoid sutures. Molecular analyses performed in two patients revealed that they are heterozygotes for a c.6255T>A (p.Cys2085*) variant in the NOTCH2 gene, resulting in a premature stop-codon. Bone mineral density (Z-score < -2) did not improved in a girl treated with calcium and vitamin D supplementation during childhood and bisphosphonate during adolescence. Hajdu-Cheney syndrome is a slowly progressive disease with a frequently unfavourable prognosis in elderly patients, especially for the development of dental anomalies, osteoporosis and the progression of skeletal complications requiring orthopedic surgeries.


Asunto(s)
Síndrome de Hajdu-Cheney , Osteoporosis , Adolescente , Anciano , Densidad Ósea , Niño , Progresión de la Enfermedad , Femenino , Síndrome de Hajdu-Cheney/complicaciones , Síndrome de Hajdu-Cheney/patología , Humanos , Osteoporosis/etiología , Pronóstico
14.
PLoS One ; 12(8): e0182377, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28767725

RESUMEN

Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.


Asunto(s)
ADN/química , ADN/genética , Mutación de Línea Germinal , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Factor VIII/genética , Predisposición Genética a la Enfermedad , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Receptores de LDL/genética
15.
Atherosclerosis ; 250: 9-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27175606

RESUMEN

The low density lipoprotein receptor (LDLR) is a transmembrane protein that plays a key role in cholesterol metabolism. It contains 860 amino acids including a 21 amino acid long signal sequence, which directs the protein into the endoplasmic reticulum. Mutations in the LDLR gene lead to cholesterol accumulation in the plasma and results in familial hypercholesterolemia (FH). Knowledge of the impact of a mutation on the LDLR protein structure and function is very important for the diagnosis and management of FH. Unfortunately, for a large proportion of mutations this information is still missing. In this study, we focused on the LDLR signal sequence and carried out functional and in silico analyses of two sequence changes, p.(Gly20Arg) and p.(Leu15Pro), localized in this part of the LDLR. Our results revealed that the p.(Gly20Arg) change, previously described as disease causing, has no detrimental effect on protein expression or LDL particle binding. In silico analysis supports this observation, showing that both the wt and p.(Gly20Arg) signal sequences adopt an expected α-helix structure. In contrast, the mutation p.(Leu15Pro) is not associated with functional protein expression and exhibits a structure with disrupted a α-helical arrangement in the signal sequence, which most likely affects protein folding in the endoplasmic reticulum.


Asunto(s)
Hiperlipoproteinemia Tipo II/genética , Receptores de LDL/genética , Animales , Arginina/química , Células CHO , Cricetinae , Cricetulus , Retículo Endoplásmico/metabolismo , Glicina/química , Heterocigoto , Humanos , Hiperlipoproteinemia Tipo II/sangre , Leucina/química , Microscopía Confocal , Mutación , Linaje , Prolina/química , Pliegue de Proteína , Señales de Clasificación de Proteína/genética , Estructura Secundaria de Proteína , Receptores de LDL/metabolismo
16.
J Clin Res Pediatr Endocrinol ; 8(4): 482-483, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27217304

RESUMEN

Wolfram-like syndrome (WFSL) is a rare autosomal dominant disease characterised by congenital progressive hearing loss, diabetes mellitus, and optic atrophy. The patient was a boy with the juvenile form of diabetes mellitus and findings which clinically matched the symptoms of Wolfram syndrome. At the age of 3 1/4 years, diabetes mellitus was diagnosed in this boy who also had severe psychomotor retardation, failure to thrive, a dysmorphic face with Peters anomaly type 3 (i.e. posterior central defect with stromal opacity of the cornea, adhering stripes of the iris, and cataract with corneolenticular adhesion), congenital glaucoma, megalocornea, severe hearing impairment, a one-sided deformity of the auricle with atresia of the bony and soft external auditory canal, non-differentiable eardrum, missing os incus, hypothyreosis, and nephrocalcinosis. Molecular-genetic examinations revealed a de novo mutation p.(Glu809Lys) in the WFS1 gene. No mutations were detected in the biological parents. The mutation p.(Glu809Lys) in the WFS1 gene is associated with WFSL.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Proteínas de la Membrana/genética , Mutación Missense , Síndrome de Wolfram/genética , Preescolar , Análisis Mutacional de ADN , Humanos , Masculino , Síndrome de Wolfram/diagnóstico
17.
Vnitr Lek ; 62(11): 924-928, 2016.
Artículo en Checo | MEDLINE | ID: mdl-28128581

RESUMEN

Familial hypercholesterolemia (FH) is the most frequent autosomal dominant hereditary disease which is characterized by a decreased LDL-cholesterol catabolism and early clinical manifestation of atherosclerosis affecting blood vessels. The MedPed (Make early diagnosis to Prevent early deaths) project aims to diagnose patients with FH as early as possible, so that they can profit the most from a therapy started in a timely manner and avoid premature cardiovascular events. Currently, as of 31 October 2016, the Czech national database keeps records of 6 947 patients with FH from 5 223 families. Considering the prevalence of FH equalling 1 : 250, this represents 17.4 % of the overall expected number of patients with FH in the Czech Republic. Determining the mutation responsible for FH, now using a next generation sequencing technology in the Czech Republic, brings with it higher diagnostic accuracy, better cooperation of patients and in particular facilitation of cascade screening in families. Although we are among the most successful countries in the world with regard to FH detection, the majority of patients are still undiagnosed. Moreover, as it turns out, most FH patients do not reach the target values with the current therapeutic possibilities. In this regard the newly approved hypolipidemic drugs, PCSK9 inhibitors, to be hopefully available also in the Czech Republic in the near future for chosen patients with FH at high risk, hold great promise.Key words: cascade screening - familial hypercholesterolemia - LDL-cholesterol - MedPed.


Asunto(s)
Hiperlipoproteinemia Tipo II/diagnóstico , Aterosclerosis/prevención & control , LDL-Colesterol/sangre , República Checa , Bases de Datos Factuales , Diagnóstico Precoz , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Hiperlipoproteinemia Tipo II/genética , Hipolipemiantes/uso terapéutico , Tamizaje Masivo , Mutación
18.
J Dermatol Case Rep ; 10(3): 39-48, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-28400893

RESUMEN

BACKGROUND: Epidermolysis bullosa simplex associated with muscular dystrophy is a genetic skin disease caused by plectin deficiency. A case of a 19-year-old Czech patient affected with this disease and a review all previously published clinical cases are presented. MAIN OBSERVATIONS: In our patient, skin signs of the disease developed after birth. Bilateral ptosis at the age of 8 years was considered as the first specific symptom of muscular dystrophy. Since then, severe scoliosis, urological and psychiatric complication have quickly developed. The signs of plectin deficiency were found by histopathological studies, electron microscopy and antigen mapping of the skin and muscular samples. Two autosomal recessive mutations in the plectin gene leading to premature termination codon were disclosed by mutation analysis. By review of all published clinical cases, 49 patients with this disease were found. 54 different mutations in the plectin gene were published, p.(Arg2319*) in exon 31 being the most frequently found. Median age of muscular dystrophy development was 9.5 years. Hoarseness and respiratory complications were the most often complications beside skin involvement. CONCLUSION: Epidermolysis bullosa simplex with muscular dystrophy was diagnosed based on clinical, histopathological (skin and muscle biopsy) and mutation analysis of the plectin gene. Overview of the genetic and clinical characteristic of this disease could be presented by review of all previously published clinical cases.

19.
J Mol Model ; 21(4): 70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25750018

RESUMEN

Hyperphenylalaninemia (HPA) is one of the most common metabolic disorders. HPA, which is transmitted by an autosomal recessive mode of inheritance, is caused by mutations of the phenylalanine hydroxylase gene. Most mutations are missense and lead to reduced protein stability and/or impaired catalytic function. The impact of such mutations varies, ranging from classical phenylketonuria (PKU), mild PKU, to non-PKU HPA phenotypes. Despite the fact that HPA is a monogenic disease, clinical data show that one PKU genotype can be associated with more in vivo phenotypes, which indicates the role of other (still unknown) factors. To better understand the phenotype-genotype relationships, we analyzed computationally the impact of missense mutations in homozygotes stored in the BIOPKU database. A total of 34 selected homozygous genotypes was divided into two main groups according to their phenotypes: (A) genotypes leading to non-PKU HPA or combined phenotype non-PKU HPA/mild PKU and (B) genotypes leading to classical PKU, mild PKU or combined phenotype mild PKU/classical PKU. Combining in silico analysis and molecular dynamics simulations (in total 3 µs) we described the structural impact of the mutations, which allowed us to separate 32 out of 34 mutations between groups A and B. Testing the simulation conditions revealed that the outcome of mutant simulations can be modulated by the ionic strength. We also employed programs SNPs3D, Polyphen-2, and SIFT but based on the predictions performed we were not able to discriminate mutations with mild and severe PKU phenotypes.


Asunto(s)
Mutación Missense/genética , Fenilalanina Hidroxilasa/química , Fenilcetonurias/genética , Simulación por Computador , Genotipo , Humanos , Simulación de Dinámica Molecular , Fenotipo , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/patología , Conformación Proteica , Relación Estructura-Actividad
20.
BMC Neurol ; 14: 154, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25135358

RESUMEN

BACKGROUND: Autosomal recessive limb-girdle muscular dystrophies (LGMD2) include a number of disorders with heterogeneous etiology that cause predominantly weakness and wasting of the shoulder and pelvic girdle muscles. In this study, we determined the frequency of LGMD subtypes within a cohort of Czech LGMD2 patients using mutational analysis of the CAPN3, FKRP, SGCA, and ANO5 genes. METHODS: PCR-sequencing analysis; sequence capture and targeted resequencing. RESULTS: Mutations of the CAPN3 gene are the most common cause of LGMD2, and mutations in this gene were identified in 71 patients in a set of 218 Czech probands with a suspicion of LGMD2. Totally, we detected 37 different mutations of which 12 have been described only in Czech LGMD2A patients. The mutation c.550delA is the most frequent among our LGMD2A probands and was detected in 47.1% of CAPN3 mutant alleles. The frequency of particular forms of LGMD2 was 32.6% for LGMD2A (71 probands), 4.1% for LGMD2I (9 probands), 2.8% for LGMD2D (6 probands), and 1.4% for LGMD2L (3 probands).Further, we present the first results of a new approach established in the Czech Republic for diagnosis of neuromuscular diseases: sequence capture and targeted resequencing. Using this approach, we identified patients with mutations in the DYSF and SGCB genes. CONCLUSIONS: We characterised a cohort of Czech LGMD2 patients on the basis of mutation analysis of genes associated with the most common forms of LGMD2 in the European population and subsequently compared the occurrence of particular forms of LGMD2 among countries on the basis of our results and published studies.


Asunto(s)
Calpaína/genética , Canales de Cloruro/genética , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/genética , Proteínas/genética , Sarcoglicanos/genética , Anoctaminas , República Checa , Análisis Mutacional de ADN , Genotipo , Humanos , Pentosiltransferasa , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA