Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 1): 130526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431008

RESUMEN

Although a promising method for lignin depolymerization, photocatalysis faces the challenge of low efficiency. In this study, MoS2/ZnO heterojunction catalysts, endowed with piezocatalysis and photocatalytic capabilities, were crafted through Zn ion intercalation for the depolymerization of phenoxyphenylethanol (PP-ol) and alkali lignin. Then, the synergistic interplay between ultrasonic-induced piezoelectric fields and heterojunctions was analyzed. The amalgamation of the piezoelectric field and heterojunction in MoS2/ZnO catalysts resulted in a diminished photogenerated hole/electron recombination efficiency, thereby fostering the generation of ·OH during the reaction. This pivotal role of ·OH emerged as a crucial reactive substance, converting 95.8 % of PP-ol through ß-O-4 bond breaking within a 3-h treatment. By incorporating ultrasonic, the contact probability of PP-ol with the catalyst was significantly improved, resulting in efficient conversion even with a reduced amount of acetonitrile in the solvent system (20 %). Furthermore, ultrasonic-light methods show high efficiency for depolymerizing Alkali lignin (AL), with 33.2 % of lignin undergoing depolymerization in a 4-h treatment. This treatment simultaneously reduces the molecular weight of AL and cleaves numerous chemical bonds within it. Overall, this work presents a green approach to lignin depolymerization, providing insights into the synergistic action of ultrasonic and photocatalysis.


Asunto(s)
Lignina , Óxido de Zinc , Lignina/química , Ultrasonido , Molibdeno , Catálisis , Álcalis
2.
Molecules ; 28(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37836694

RESUMEN

Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.


Asunto(s)
Disolventes Eutécticos Profundos , Polifenoles , Polifenoles/análisis , Solventes/química , Alimentos , Tecnología
3.
Int J Biol Macromol ; 252: 126509, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633551

RESUMEN

To improve the antimicrobial ability of MoS2-containing films, we used lignin and triple-frequency ultrasound for liquid-phase exfoliation (LPE) to obtain MoS2 nanosheets. Photoresponsive antimicrobial films with MoS2 nanosheets, lignin, polyvinyl alcohol and deep eutectic solvents were subsequently prepared. Lignin functionalized the MoS2 nanosheets by chemically linking with S in MoS2 and significantly improved the exfoliation efficiency. Tri-frequency ultrasound produces beneficial effects on the LPE process by creating a more homogeneous sound field and a stronger degree of cavitation. The concentration of MoS2 nanosheets in the exfoliating solution could reach 1.713 mg/mL under the effect of lignin-ultrasound. The antimicrobial ability of the films was analyzed, and the colony-forming units of E. coli and S. aureus could be reduced from 7 × 106 to 1 × 106 cfu/mL under the irradiation of infrared. The lignin in the film undergoes depolymerization and demethoxylation under the irradiation of infrared to have a more phenolic hydroxyl structure, which confers the growth inhibition ability of the films for bacteria that cannot be in close contact with the film. The method we used has some significance for the preparation of MoS2 nanosheets, and composite films prepared from MoS2, and lignin can be used in food packaging, wound antimicrobials, and other fields.


Asunto(s)
Antiinfecciosos , Lignina , Lignina/farmacología , Molibdeno/farmacología , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología
4.
Food Res Int ; 171: 113054, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37330854

RESUMEN

The off-odors associated with spoilage of acidic beverages are linked to the germination and growth of Alicyclobacillus acidoterrestris (AAT) spores. As a consequence, we determined the influence of nutrients, non-nutrient germinants, dual-frequency thermosonication (DFTS), and food matrix on spore germination. AAT spores in orange juice (OJ), supplemented by L-alanine (L-ala), had the highest germination rate and lowest DPA content at 10 h of incubation. The formation of microscopic pores in cell membranes during DFTS caused irreversible damage in AAT spores in citrate buffer solution (CBS); however, it stimulated AAT spore germination in CBS containing L-ala. Hence, the germination potential was established in the order: L-ala > Calcium dipicolinate > asparagine, glucose, fructose, and potassium ion mixture (AGFK) > L-valine. The conductivity analysis indicated that membrane damage could be a key factor contributing to the artificial germination in CBS. AFM images revealed that after 2 h of adding L-ala, the protein content increased with increased germinated cells. TEM showed that membrane poration and coat detachment were the main pre-germination morphological changes detected after DFTS treatment. This study provides evidence that germination stimulated with DFTS might be an effective strategy for reducing A. acidoterrestris spores in fruit juices.


Asunto(s)
Alicyclobacillus , Esporas Bacterianas , Bebidas , Jugos de Frutas y Vegetales
5.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36815260

RESUMEN

Lignin, an amorphous biomacromolecule abundantly distributed in the plant kingdom, has gained considerable attention due to its intrinsic bioactivities and renewable nature. Owing to its polyphenolic structure, lignin has a variety of human health activities, including antioxidant, antimicrobial, antidiabetic, antitumor, and other activities. The extraction of lignin from various sources in a green and sustainable manner is critical in the food industry. Deep eutectic solvent (DES) has recently been recognized as a class of safe and environmentally friendly media capable of efficiently extracting lignin. This article comprehensively reviews the recent advances in lignin extraction using DES, discusses the influential factors on the antioxidant activity of lignin, interprets the relationship between antioxidant activity and lignin structure, and overviews the applications of lignin in the food industry. We aim to highlight the advantages of DES in lignin extraction and valorization from the nutrition and food views.

6.
Bioresour Bioprocess ; 10(1): 21, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38647951

RESUMEN

Lignin has enormous potential as a renewable feedstock for depolymerizing to numerous high-value chemicals. However, lignin depolymerization is challenging owing to its recalcitrant, heterogenous, and limited water-soluble nature. From the standpoint of environmental friendliness and sustainability, enzymatic depolymerization of lignin is of great significance. Notably, laccases play an essential role in the enzymatic depolymerization of lignin and are considered the ultimate green catalysts. Deep eutectic solvent (DES), an efficient media in biocatalysis, are increasingly recognized as the newest and utmost green solvent that highly dissolves lignin. This review centers on a lignin depolymerization strategy by harnessing the good lignin fractionating capability of DES and the high substrate and product selectivity of laccase. Recent progress and insights into the laccase-DES interactions, protein engineering strategies for improving DES compatibility with laccase, and controlling the product selectivity of lignin degradation by laccase or in DES systems are extensively provided. Lastly, the challenges and prospects of the alliance between DES and laccase for lignin depolymerization are discussed. The collaboration of laccase and DES provides a great opportunity to develop an enzymatic route for lignin depolymerization.

7.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36412233

RESUMEN

The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.

8.
Food Res Int ; 156: 111087, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650993

RESUMEN

Alicyclobacillus acidoterrestris (AAT) was proposed as an index of pasteurization design for high-acid fruit products due to its spore resistance and repeated spoilage incidences in fruit juices. This study aimed to determine the effectiveness of pulsed multifrequency ultrasound to minimize AAT spores and vegetative cells in aqueous suspension. For this research, an investigation of the reactive oxygen species and antioxidant activity was performed to examine the effect of temperature and frequency on AAT spore inoculation. Total decreases in AAT bacteria were 5.99, 5.74 Log CFU/mL in vegetative cells for dual-frequency thermosonication (DFTS) and dual-frequency ultrasonication (DFUS), respectively, while 5.90 and 5.38 Log CFU/mL in spores for both DFUS and DFTS, respectively. The loss of the percentage of cells in ultrasound (US) and thermosonication (TS) treatments was inversely associated with the rate of O2-and H2O2 development. The fluorescence microscopy revealed a higher bactericidal efficacy of DFTS compared to the DFUS and control. Scanning Electron Microscopy (SEM) and Transmission electron microscopy (TEM) demonstrated ultra-structural modifications such as the interruption of cell walls by cavitation and pores in the membrane structure of the AAT bacteria induced by sonoporation. Several TS frequencies of 20/40/60, 20/40, and 20 kHz treated spores had a higher electrical conductivity than untreated ones, with an improvement of 7.94, 5.68, and 3.72 %, respectively. Fourier-transform infrared (FTIR) spectroscopy revealed major changes in the spectral region of membrane fatty acids and proteins of AAT. Simultaneously, AAT inactivation specific energy rate was significantly reduced using dual-frequency ultrasound, compared to mono-frequency thermosonication. The significant results of this work recommended pulsed DFUS as an alternative application to mono-frequency US in beverage industries.


Asunto(s)
Peróxido de Hidrógeno , Esporas Bacterianas , Alicyclobacillus , Bebidas/microbiología , Peróxido de Hidrógeno/farmacología , Esporas
9.
Food Chem ; 361: 130108, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34038826

RESUMEN

This is the first time to investigate the synergistic inactivation effect and mechanism of multifrequency ultrasound (MTUS) on A. acidoterrestris (AAT) vegetative cells and spores, nutrients and enzymes of orange juice. The optimized results of MTUS (using Box Behnken design- surface responsemethodology) and further comparison with different mode of ultrasound (mono-and multi-frequency) revealed that 20/40 kHz, 24 min and 64 °C were the best optimum results. The AAT spores and vegetative cells were inactivated by 2 and 4 logs, respectively, without deteriorating orange juice contents. In addition, AAT inactivation indicated an inversely proportional relationship with ROS production. FT-IR and UV-Vis spectroscopy characterization confirmed the existence of ROS in treated orange juice and LF-NMR analysis confirmed the inactivation of AAT spores. The findings illustrated the successfully used dual-frequency ultrasound technology for fruit beverages, promoting beneficial changes in physical properties without any significant effects on the quality of ascorbic acid.


Asunto(s)
Alicyclobacillus/fisiología , Citrus sinensis/química , Jugos de Frutas y Vegetales/microbiología , Viabilidad Microbiana , Especies Reactivas de Oxígeno/química , Sonicación , Esporas Bacterianas/fisiología , Ácido Ascórbico/análisis , Citrus sinensis/microbiología , Microbiología de Alimentos , Calidad de los Alimentos , Análisis Espectral , Temperatura
10.
Bioresour Technol ; 332: 125040, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33831790

RESUMEN

The higher heating value (HHV) and exergy of ultrasound-assisted deep eutectic solvent pretreated watermelon rind (WMR) biomass were investigated. Thereafter, the co-pyrolysis of the WMR biomass and coal blends was studied. The pyrolysis kinetics and thermodynamic parameters of the WMR-coal blends were determined using four isoconversional models (Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Friedman and Starink). The HHVs of the pretreated WMR ranged between 12.73 and 19.28 MJ/kg, while the exergy value for the raw and pretreated WMR were 16.08 and 21.55 MJ/kg, respectively. The lower heating value related exergy had the greatest influence on the overall exergy of the WMR. The values of the pre-exponential factor showed variations in wide range, and the change in entropy of the system displayed both negative and positive entropies. The activation energy and enthalpy varied directly with the amount of coal in the blends. Amongst the isoconversional model methods, Friedman model was the best predictor of the kinetic parameters.


Asunto(s)
Citrullus , Pirólisis , Biomasa , Calefacción , Cinética , Solventes , Termodinámica , Termogravimetría
11.
Ultrason Sonochem ; 73: 105470, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33535160

RESUMEN

Sugarcane bagasse (SCB) is an abundant agricultural waste in China and the conversion of the waste into plethora of useful resources is very vital. To achieve this, fractionation of the waste is highly important in the biomass biorefinery. The present study aims at investigating the synergistic role of deep eutectic solvents (DES) with sweeping frequency ultrasound (SFUS) and fixed frequency ultrasound (FFUS) in the fractionation of SCB to enhance the enzymatic saccharification process. Therefore, the effects of ultrasound (US) and DES conditions on the pretreatment efficiency were investigated. Under optimum SCB pretreatment conditions, FFUS (40 kHz, 60 min) + DES (choline chloride (ChCl)-lactic acid (LA), 120 °C, 3 h) and SFUS (40 kHz, 60 min) + DES (ChCl-LA, 120 °C, 3 h), the lignin removal rates were 80.13 and 85.62%, respectively. The hemicellulose removal rates were 78.08 and 90.46%, respectively; and the contents of glucose, xylose and arabinose in the liquid fractions after FFUS + DES pretreatment were 7.07, 17.95 and 3.01%, respectively. However, the yield of glucose, xylose, and cellobiose after enzymatic hydrolysis of the SFUS + DES pretreated SCB were 86.76, 38.68, and 20.76%. Analytical studies revealed that the SFUS + DES pretreatment can effectively destroy the ultrastructure of SCB and reduce the crystallinity of cellulose. Furthermore, the mechanism of pretreatment with SFUS + DES was proposed, which confirmed the excellent performance of SFUS + DES. Thus, the application of SFUS + DES pretreatment was able to improve the removal of lignin and hemicellulose from SCBs.


Asunto(s)
Celulosa/química , Fraccionamiento Químico/métodos , Enzimas/metabolismo , Saccharum/química , Solventes/química , Sonicación/métodos , Carbohidratos/análisis , Hidrólisis , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
12.
J Sci Food Agric ; 101(10): 4361-4372, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33426672

RESUMEN

BACKGROUND: Ultrasonic pretreatment is a novel physical method that can be used in the extraction process of okra pectin. Real-time online monitoring technologies were introduced in time and frequency domains when okra was pretreated. Preparation time of dried okra and yield of okra pectin were studied; and physicochemical properties of okra pectin were analyzed at the optimum ultrasonic parameter. RESULTS: Results showed that ultrasonic intensity of sweeping-frequency ultrasonic (SFU) pretreatment was stronger than that of fixed-frequency ultrasonic pretreatment (FFU). SFU pretreatment (60 ± 1 kHz) at 30 min had a strong ultrasonic voltage peak of 0.05387 V and signal power peak of -6.62 dBm. The preparation time of dried okra was 160 ± 14.14 min in the pretreated group, 44.83% lower than control without SFU pretreatment. The intercellular space was 56.03% higher than control. Water diffusion coefficient increased from 1.41 × 10-9 to 2.14 × 10-9  m2  s-1 . Monobasic quadratic equations were developed for the monitored ultrasonic intensity and pectin yield. Compared to control, extraction yield (16.70%), pectin content (0.564 mg mg-1 ), solubility (0.8187 g g-1 ) and gel strength (30.91 g) were improved in the pretreated group. Viscosity decreased, and values of G' and G″ crossing at 63 rad s-1 revealed the viscoelastic behavior and the beginning of viscous behavior with a sol state. CONCLUSION: Decrement of dried preparation time and increment of yield were achieved by ultrasonic pretreatment during the extraction process of okra pectin, and the relationship of ultrasonic intensity monitored by real-time online technologies and yield was given. © 2021 Society of Chemical Industry.


Asunto(s)
Abelmoschus/química , Pectinas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Ultrasonido/métodos , Peso Molecular , Pectinas/análisis , Extractos Vegetales/análisis , Solubilidad , Ultrasonido/instrumentación , Viscosidad
13.
Ultrason Sonochem ; 64: 104982, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32004753

RESUMEN

The effects of moderate thermosonication (MTS) on the quality quartet: physico-chemical, microbial, nutritional and sensory qualities of orange juice (OJ) inoculated with Alicyclobacillus acidoterrestris (AAT) were studied during 24 days of storage at ambient and refrigerated temperatures. The bioactive compounds and antioxidant activity of OJ decreased with storage, while the pectin methyl esterase (PME) increased. Nonetheless, noticeable changes were observed from the 12th day of storage. There was no obvious (p > 0.05) variation in pH and total soluble solids. To determine the nutritional and microbial quality characteristics of OJ during storage, non-linear kinetic curves were successfully fitted with least square fitting polynomial and four-parameter log-logistic distribution models. The E-nose sensors succeeded in discriminating between the aroma of non-treated and treated OJ based on linear discriminant analysis (LDA). Furthermore, terpenes, alcohol and partially aromatic compounds were the main spoilage indicators of OJ during storage based on E-nose analysis and confirmed by HS-SPME-GC/MS analysis. Thus, MTS significantly extended the shelf life of the quality quartet of natural OJ at 4 °C. E-nose-GC/MS fusion offered odor fingerprints to AAT microorganisms that can be used as spoilage index without using traditional food analysis techniques. The proposed approach can be used as an alternative tool for rapid detection of spoilage microorganisms in OJ.


Asunto(s)
Citrus sinensis/química , Calidad de los Alimentos , Almacenamiento de Alimentos/métodos , Jugos de Frutas y Vegetales/análisis , Odorantes/análisis , Sonicación , Temperatura , Antioxidantes/análisis , Fenómenos Químicos , Citrus sinensis/microbiología , Jugos de Frutas y Vegetales/microbiología , Gusto
14.
Bioresour Technol ; 297: 122408, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31767426

RESUMEN

Biochar properties are significantly influenced and controlled by biomass feedstock type and pyrolysis operating conditions, and the development of multiple biochar properties for various applications has necessitated the need for blending different feedstocks together. Co-pyrolysis as a potential technology has been proposed to improve the overall performance of biomass pyrolysis and has proved effective in improving biochar properties. Consequently, the combination of lignocellulosic and macroalgae biomasses has been targeted for biochar production and improvement of biochar properties through co-pyrolysis. This paper therefore presents a critical review of biochar production from co-pyrolysis of lignocellulosic and macroalgae biomass (CLMB). It discusses the biomass feedstock selection, characterization, pre-processing and suitability for thermal processing; and analyzes biochar production, characterization and reactor technologies for CLMB. Furthermore, the potential and economic viability of biochar production system from CLMB are highlighted; and finally, the current state and future directions of biochar production from CLMB are extensively discussed.


Asunto(s)
Algas Marinas , Biomasa , Carbón Orgánico , Lignina , Pirólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...