Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 98: 117561, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157838

RESUMEN

The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors. In this study, we have developed a TR-FRET-based enzymatic assay for the detection of MKK3 activity in vitro and a BRET-based assay to assess ligand binding to this enzyme within intact human cells. These assays were instrumental in identifying hit compounds against MKK3 that share a common chemical scaffold, sourced from a library of bioactive kinase inhibitors. Initial hits were subsequently expanded through the synthesis of novel analogs. The resulting structure-activity relationship (SAR) was rationalized using molecular dynamics simulations against a homology model of MKK3. We expect our findings to expedite the development of novel, potent, selective, and bioactive inhibitors, thus facilitating investigations into MKK3's role in various cancers.


Asunto(s)
Neoplasias , Pirimidinas , Humanos , MAP Quinasa Quinasa 3 , Pirimidinas/química , Relación Estructura-Actividad , Fosforilación , Proliferación Celular , Inhibidores de Proteínas Quinasas/química
2.
Bioorg Med Chem Lett ; 68: 128764, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35504513

RESUMEN

The discovery of potent and selective inhibitors for understudied kinases can provide relevant pharmacological tools to illuminate their biological functions. DYRK1A and DYRK1B are protein kinases linked to chronic human diseases. Current DYRK1A/DYRK1B inhibitors also antagonize the function of related protein kinases, such as CDC2-like kinases (CLK1, CLK2, CLK4) and DYRK2. Here, we reveal narrow spectrum dual inhibitors of DYRK1A and DYRK1B based on a benzothiophene scaffold. Compound optimization exploited structural differences in the ATP-binding sites of the DYRK1 kinases and resulted in the discovery of 3n, a potent and cell-permeable DYRK1A/DYRK1B inhibitor. This compound has a different scaffold and a narrower off-target profile compared to current DYRK1A/DYRK1B inhibitors. We expect the benzothiophene derivatives described here to aid establishing DYRK1A/DYRK1B cellular functions and their role in human pathologies.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Humanos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas , Proteínas Tirosina Quinasas/metabolismo , Tiofenos
3.
Sci Rep ; 9(1): 16452, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712618

RESUMEN

Calcium/Calmodulin-dependent Protein Kinase Kinase 2 (CAMKK2) acts as a signaling hub, receiving signals from various regulatory pathways and decoding them via phosphorylation of downstream protein kinases - such as AMPK (AMP-activated protein kinase) and CAMK types I and IV. CAMKK2 relevance is highlighted by its constitutive activity being implicated in several human pathologies. However, at present, there are no selective small-molecule inhibitors available for this protein kinase. Moreover, CAMKK2 and its closest human homolog, CAMKK1, are thought to have overlapping biological roles. Here we present six new co-structures of potent ligands bound to CAMKK2 identified from a library of commercially-available kinase inhibitors. Enzyme assays confirmed that most of these compounds are equipotent inhibitors of both human CAMKKs and isothermal titration calorimetry (ITC) revealed that binding to some of these molecules to CAMKK2 is enthalpy driven. We expect our results to advance current efforts to discover small molecule kinase inhibitors selective to each human CAMKK.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/química , Inhibidores de Proteínas Quinasas/química , Animales , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Descubrimiento de Drogas , Humanos , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Recombinantes , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA