Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5568, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195604

RESUMEN

Plastic degradation by biological systems with re-utilization of the by-products could be a future solution to the global threat of plastic waste accumulation. Here, we report that the saliva of Galleria mellonella larvae (wax worms) is capable of oxidizing and depolymerizing polyethylene (PE), one of the most produced and sturdy polyolefin-derived plastics. This effect is achieved after a few hours' exposure at room temperature under physiological conditions (neutral pH). The wax worm saliva can overcome the bottleneck step in PE biodegradation, namely the initial oxidation step. Within the saliva, we identify two enzymes, belonging to the phenol oxidase family, that can reproduce the same effect. To the best of our knowledge, these enzymes are the first animal enzymes with this capability, opening the way to potential solutions for plastic waste management through bio-recycling/up-cycling.


Asunto(s)
Mariposas Nocturnas , Polietileno , Animales , Biodegradación Ambiental , Monofenol Monooxigenasa/metabolismo , Mariposas Nocturnas/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Saliva/metabolismo
2.
Cell Mol Life Sci ; 78(9): 4259-4282, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33595669

RESUMEN

Misuse and overuse of antibiotics have contributed in the last decades to a phenomenon known as antibiotic resistance which is currently considered one of the principal threats to global public health by the World Health Organization. The aim to find alternative drugs has been demonstrated as a real challenge. Thanks to their biodiversity, insects represent the largest class of organisms in the animal kingdom. The humoral immune response includes the production of antimicrobial peptides (AMPs) that are released into the insect hemolymph after microbial infection. In this review, we have focused on insect immune responses, particularly on AMP characteristics, their mechanism of action and applications, especially in the biomedical field. Furthermore, we discuss the Toll, Imd, and JAK-STAT pathways that activate genes encoding for the expression of AMPs. Moreover, we focused on strategies to improve insect peptides stability against proteolytic susceptibility such as D-amino acid substitutions, N-terminus modification, cyclization and dimerization.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Proteínas de Insectos/metabolismo , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Biopelículas/efectos de los fármacos , Defensinas/química , Defensinas/metabolismo , Defensinas/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Transducción de Señal
3.
J Med Entomol ; 58(2): 658-665, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33200778

RESUMEN

A relevant species in waste management but also in forensic, medical, and veterinary sciences is the black soldier fly, Hermetia illucens (Linnaeus; Diptera: Stratiomyidae). An ultrastructural study by scanning electron microscopy (SEM) was conducted for the first time on maxillary palps of both sexes, describing in detail the morphology and distribution of sensilla and microtrichia. The maxillary palps, composed of two segments, show sexual dimorphism in length and shape. In both sexes, the first segment is covered only by microtrichia, but the second one is divided into two parts: the proximal one, covered only by microtrichia, and the distal one containing both microtrichia and sensory structures. These structures include two types of sensory pits and one of chaetic sensilla. Due to sexual dimorphism in palp size, females have a higher number of sensory pits. The sexual dimorphism of palps and the presence and role of sensilla in H. illucens was discussed in comparison to other species of the family Stratiomyidae and of other Diptera. This study may represent a base for further investigations on mouthpart structures of this species, involved in key physiological activities, such as feeding, mating and oviposition.


Asunto(s)
Dípteros/ultraestructura , Animales , Femenino , Masculino , Boca/ultraestructura
4.
J Med Entomol ; 54(4): 925-933, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28399222

RESUMEN

The black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), is a relevant species in waste and pest management, but is also of forensic and medical importance. A scanning electron microscopy (SEM) investigation of the antennae of both sexes of H. illucens is presented here for the first time. The antenna is composed of three regions: the scape, the pedicel, and the flagellum. The first two regions are single segments, whereas the third region, the longest one, is composed of eight flagellomeres. The scape and pedicel have microtrichia, chaetic sensilla, and rounded perforations. The flagellum is covered by different microtrichia, the morphology of which is described in detail. Two types of sensory pit are found on flagellomeres 1 to 6. An oval depression with trichoid sensilla extends from flagellomeres 4 to 6. On both sides of flagellomere 8 is a lanceolate depression covered by hair-like microtrichia. Morphometric and morphological analyses revealed some sex-related differences. The results of the SEM investigations are compared with those obtained on other species of the family Stratiomyidae and other brachyceran Diptera. The possible role of sensilla in sensory perception is also discussed in comparison with nondipteran species.


Asunto(s)
Antenas de Artrópodos/ultraestructura , Dípteros/ultraestructura , Animales , Femenino , Masculino , Microscopía Electrónica de Rastreo
5.
J Exp Biol ; 212(18): 2998-3006, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19717683

RESUMEN

Insect pathogens and parasites often affect the growth and development of their hosts, but understanding of these processes is fragmentary. Among the most species-rich and important mortality agents of insects are parasitoid wasps that carry symbiotic polydnaviruses (PDVs). Like many PDV-carrying wasps, Microplitis demolitor inhibits growth and pupation of its lepidopteran host, Pseudoplusia includens, by causing host hemolymph juvenile hormone (JH) titers to remain elevated and preventing ecdysteroid titers from rising. Here we report these alterations only occurred if P. includens was parasitized prior to achieving critical weight, and were fully mimicked by infection with only M. demolitor bracovirus (MdBV). Metabolic assays revealed that MdBV infection of pre-critical weight larvae caused a rapid and persistent state of hyperglycemia and reduced nutrient stores. In vitro ecdysteroid assays further indicated that prothoracic glands from larvae infected prior to achieving critical weight remained in a refractory state of ecdysteroid release, whereas infection of post-critical weight larvae had little or no effect on ecdysteroid release by prothoracic glands. Taken together, our results suggest MdBV causes alterations in metabolic physiology, which prevent the host from achieving critical weight. This in turn inhibits the endocrine events that normally trigger metamorphosis.


Asunto(s)
Larva , Metamorfosis Biológica/fisiología , Mariposas Nocturnas , Polydnaviridae/patogenicidad , Simbiosis , Avispas/virología , Animales , Glucemia/metabolismo , Ecdisteroides/metabolismo , Hemolinfa/química , Interacciones Huésped-Parásitos , Larva/parasitología , Larva/fisiología , Larva/virología , Mariposas Nocturnas/parasitología , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/virología , Avispas/fisiología
6.
J Insect Physiol ; 52(8): 870-80, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16843482

RESUMEN

The embryo of Toxoneuron nigriceps (Hymenoptera, Braconidae) is surrounded by an extraembryonic membrane, which, at hatching, releases teratocytes and gives rise to a cell layer embedding the body of the 1st instar larva. This cell layer was studied at different developmental times, from soon after hatching up to the first larval moult, in order to elucidate its ultrastructural, immunocytochemical and physiological function. The persisting "larval serosa" shows a striking structural and functional complexity: it is a multifunctional barrier with protective properties, limits the passage of macromolecules and it is actively involved in the enzymatic processing and uptake of nutrients. The reported results emphasizes the important role that the embryo-derived host regulation factors may have in parasitism success in Hymenoptera koinobionts.


Asunto(s)
Larva/fisiología , Avispas/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Membranas Extraembrionarias/fisiología , Membranas Extraembrionarias/ultraestructura , Interacciones Huésped-Parásitos/fisiología , Larva/ultraestructura , Permeabilidad , Membrana Serosa/fisiología , Membrana Serosa/ultraestructura , Absorción Cutánea/fisiología , Avispas/ultraestructura
7.
Insect Mol Biol ; 14(2): 195-205, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15796753

RESUMEN

Aphidius ervi is an endophagous braconid, parasitoid of the pea aphid, Acyrthosiphon pisum. A. ervi teratocytes, deriving from the dissociation of the embryonic serosa, synthesize and release two major proteins into the host haemocoel. The gene of one of these proteins has been cloned and characterized. This gene codes for a 15.8 kDa protein belonging to the fatty acid binding protein (FABP) family, named Ae-FABP (A. ervi-FABP). It is abundantly present in the host haemolymph when the parasitoid larva attains its maximum growth rate. The recombinant Ae-FABP binds to fatty acids in vitro, showing a high affinity to C14-C18 saturated fatty acids and to oleic and arachidonic acid. The possible nutritional role for the parasitoid larva of Ae-FABP is discussed.


Asunto(s)
Áfidos/parasitología , Proteínas Portadoras/genética , Avispas/citología , Avispas/metabolismo , Secuencia de Aminoácidos , Naftalenosulfonatos de Anilina/metabolismo , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Proteínas Portadoras/metabolismo , Clonación Molecular , Cartilla de ADN , Proteínas de Unión a Ácidos Grasos , Interacciones Huésped-Parásitos , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN , Avispas/genética
8.
Insect Biochem Mol Biol ; 34(2): 177-83, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14871614

RESUMEN

Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) is an endophagous parasitoid of the tobacco budworm Heliothis virescens (F.) (Lepidoptera, Noctuidae). Parasitized H. virescens larvae are developmentally arrested and show a complex array of pathological symptoms ranging from the suppression of the immune response to an alteration of ecdysone biosynthesis and metabolism. Most of these pathological syndromes are induced by the polydnavirus associated with T. nigriceps (TnBV). An overview of our recent research work on this system is described herein. The mechanisms involved in the disruption of the host hormonal balance have been further investigated, allowing to better define the physiological model previously proposed. A functional genomic approach has been undertaken to identify TnBV genes expressed in the host and to assess their role in the major parasitoid-induced pathologies. Some TnBV genes cloned so far are novel and do not show any similarity with genes already available in genomic databases, while others code for proteins having conserved domains, such as aspartic proteases and tyrosine phosphatases. Sequencing of the entire TnBV genome is in progress and will considerably contribute to the understanding of the molecular bases of parasitoid-induced host alterations.


Asunto(s)
Himenópteros/fisiología , Lepidópteros/fisiología , Lepidópteros/parasitología , Secuencia de Aminoácidos , Animales , Ácido Aspártico Endopeptidasas/biosíntesis , Ácido Aspártico Endopeptidasas/genética , Glándulas Endocrinas/fisiología , Expresión Génica , Genes Virales , Genoma Viral , Interacciones Huésped-Parásitos , Himenópteros/genética , Himenópteros/virología , Larva/crecimiento & desarrollo , Larva/metabolismo , Lepidópteros/genética , Datos de Secuencia Molecular , Polydnaviridae/enzimología , Polydnaviridae/genética , Proteínas Estructurales Virales/genética
9.
J Insect Physiol ; 48(10): 971-980, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12770044

RESUMEN

The physiological mechanism of resistance to the endophagous braconid Aphidius ervi Haliday (Hymenoptera, Braconidae) by a pink clone (PC) of Acyrthosiphon pisum (Harris) (Homoptera, Aphididae) has been investigated. Comparative data on parasitoid development and associated host biochemical changes in the resistant PC aphids and in a susceptible green clone (GC) of A. pisum are reported. When the PC aphids were attacked as early 4th instars, the developing parasitoid larvae showed a strongly reduced increase in size, compared to those synchronously developing in GC aphids, and were unable to produce a regular mummy. In contrast, parasitism of 2nd instar PC aphids, allowed completion of parasitoid development, but adults had a prolonged developmental time, due to a longer duration of parasitoid's final (3rd) instar. In all cases, teratocytes, cells deriving from the A. ervi serosal membrane, and the proteins abundantly synthesised by them, were never found in the haemolymph of parasitised PC aphids. Host castration, as demonstrated by total protein incorporation into reproductive tissues, was total in the majority of early (2nd instar) parasitised host aphids, while it was limited when later instars (4th) of PC aphids were parasitised. This is partly due to the absence of the cytolytic activity of teratocytes on host embryos, which, through their persistence, may compete for nutritional resources with the developing parasitoid larvae. In parasitised PC aphids, this competitive effect is further aggravated for the parasitoid by the absence of the regulated amino acid titre increase in the host haemolymph, which is regularly observed in GC aphids. Failure of teratocyte development in the PC clone of the pea aphid is, then, the major functional constraint accounting for the reduction/inhibition of A. ervi larval growth. The reported results allow to assess in vivo the role of teratocytes in the host physiological redirection and nutritional exploitation by the parasitoid, and to integrate and validate the proposed physiological model of host-parasitoid interactions in the system A. pisum-A.ervi.

10.
Insect Biochem Mol Biol ; 29(12): 1087-96, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10612043

RESUMEN

Cardiochiles nigriceps Viereck is an endophagous parasitoid of larval stages of the tobacco budworm, Heliothis virescens (F.). This hymenopteran parasitoid, belonging to the family Braconidae, is associated with a polydnavirus (CnPDV), injected at ovi-position along with the egg. The infection of various tissues by CnPDV determines the suppression of the host immune system and the developmental arrest of mature host larvae. In this study, CnPDV has been characterized at the structural and molecular level. The negatively stained nucleocapsids show evident 'end structures' and a tail-like appendage. The CnPDV genome is typically segmented, with circular dsDNA molecules, ranging in size from 2.5 kb to more than 23 kb. The early expression pattern of CnPDV in parasitized hosts has been analysed and viral clones, genomic and cDNAs, identifying genes expressed within 48 h after parasitization have been isolated. The molecular organization of one of these genes, named CnPDV1, and its putative protein product have been determined. Significant sequence homologies with other known proteins were not detected. In situ hybridization experiments indicated that this gene is expressed in the prothoracic glands of parasitized host mature larvae. A functional analysis of CnPDV1 gene product is required to assess its possible role in the regulation of parasitoid-induced alterations of host larvae.


Asunto(s)
Mariposas Nocturnas/parasitología , Polydnaviridae/genética , Proteínas Virales/genética , Avispas/virología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario , Expresión Génica , Genes Virales , Genoma Viral , Larva/parasitología , Datos de Secuencia Molecular
11.
J Insect Physiol ; 44(9): 845-857, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12769879

RESUMEN

Heliothis virescens (F.) last instar larvae parasitized by the endophagous braconid Cardiochiles nigriceps Viereck fail to attain the pupal stage, due to a parasitoid-induced alteration of ecdysteroid biosynthesis and metabolism. Currently available information on host prothoracic gland inactivation in this host-parasitoid system is reported here. Prothoracic glands of H. virescens mature larvae show a depressed biosynthetic activity, without undergoing gross morphological disruption. The ultrastructure of gland cells is characterized by minor parasitoid-induced changes, with the rough endoplasmic reticulum appearing more developed and electrondense than in nonparasitized controls. Eventually, the cells of prothoracic glands of parasitized host last instar larvae die but maintain their structural integrity. The inactivation of pupally committed host prothoracic glands is achieved through the disruption of the PTTH signal transduction pathway. The second messenger cAMP appears to be normally produced in response to PTTH stimulation of glands explanted from parasitized host larvae, however the downstream activation of the cAMP-dependent protein kinase does not appear to occur. In fact, a marked underphosphorylation of regulatory target proteins is observed. This underphosphorylation is associated with a significant reduction in general protein synthesis, which appears to be blocked at the translational level, to a redirection of specific protein synthesis and to a drastic suppression of ecdysteroidogenesis. These parameters appeared to be correlated in a kinetic time-course study, confirming their functional link. C. nigriceps polydnavirus (CnPDV) plays a major role in the inactivation of pupally committed host prothoracic glands, while putative factors occurring in the host haemolymph do not seem to be of particular importance at that developmental stage. Southern blot hybridization indicates the occurrence of PKI(protein kinase inhibitor)-like genes in the C. nigriceps genome, which, in contrast, are undetectable in H. virescens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...