Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2361792, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38828793

RESUMEN

Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.


Asunto(s)
Animales Salvajes , Subtipo H5N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Reino Unido/epidemiología , Animales Salvajes/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/transmisión , Canidae , Gripe Aviar/virología , Gripe Aviar/mortalidad , Gripe Aviar/transmisión
2.
J Med Microbiol ; 73(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771617

RESUMEN

Infectious bronchitis virus (IBV) is a highly contagious avian Gammacoronavirus that affects mainly chickens (Gallus gallus) but can circulate in other avian species. IBV constitutes a significant threat to the poultry industry, causing reduced egg yield, growth and mortality levels that can vary in impact. The virus can be transmitted horizontally by inhalation or direct/indirect contact with infected birds or contaminated fomites, vehicles, farm personnel and litter (Figure 1). The error-prone viral polymerase and recombination mechanisms mean diverse viral population results, with multiple genotypes, serotypes, pathotypes and protectotypes. This significantly complicates control and mitigation strategies based on vigilance in biosecurity and the deployment of vaccination.


Asunto(s)
Pollos , Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/clasificación , Virus de la Bronquitis Infecciosa/fisiología , Animales , Pollos/virología , Enfermedades de las Aves de Corral/virología , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria
3.
Pathogens ; 13(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38251390

RESUMEN

The United Kingdom (UK) and Europe have seen successive outbreaks of H5N1 clade 2.3.4.4b high-pathogenicity avian influenza virus (HPAIV) since 2020 peaking in the autumn/winter periods. During the 2021/22 season, a mass die-off event of Svalbard Barnacle Geese (Branta leucopsis) was observed on the Solway Firth, a body of water on the west coast border between England and Scotland. This area is used annually by Barnacle Geese to over-winter, before returning to Svalbard to breed. Following initial identification of HPAIV in a Barnacle Goose on 8 November 2021, up to 32% of the total Barnacle Goose population may have succumbed to disease by the end of March 2022, along with other wild bird species in the area. Potential adaptation of the HPAIV to the Barnacle Goose population within this event was evaluated. Whole-genome sequencing of thirty-three HPAIV isolates from wild bird species demonstrated that there had been two distinct incursions of the virus, but the two viruses had remained genetically stable within the population, whilst viruses from infected wild birds were closely related to those from poultry cases occurring in the same region. Analysis of sera from the following year demonstrated that a high percentage (76%) of returning birds had developed antibodies to H5 AIV. This study demonstrates genetic stability of this strain of HPAIV in wild Anseriformes, and that, at the population scale, whilst there is a significant impact on survival, a high proportion of birds recover following infection.

4.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38289661

RESUMEN

During the UK 2020-2021 epizootic of H5Nx clade 2.3.4.4b high-pathogenicity avian influenza viruses (HPAIVs), high mortality occurred during incursions in commercially farmed common pheasants (Phasianus colchicus). Two pheasant farms, affected separately by H5N8 and H5N1 subtypes, included adjacently housed red-legged partridges (Alectoris rufa), which appeared to be unaffected. Despite extensive ongoing epizootics, H5Nx HPAIV partridge outbreaks were not reported during 2020-2021 and 2021-2022 in the UK, so it is postulated that partridges are more resistant to HPAIV infection than other gamebirds. To assess this, pathogenesis and both intra- and inter-species transmission of UK pheasant-origin H5N8-2021 and H5N1-2021 HPAIVs were investigated. Onward transmission to chickens was also assessed to better understand the risk of spread from gamebirds to other commercial poultry sectors. A lower infectious dose was required to infect pheasants with H5N8-2021 compared to H5N1-2021. However, HPAIV systemic dissemination to multiple organs within pheasants was more rapid following infection with H5N1-2021 than H5N8-2021, with the former attaining generally higher viral RNA levels in tissues. Intraspecies transmission to contact pheasants was successful for both viruses and associated with viral environmental contamination, while interspecies transmission to a first chicken-contact group was also efficient. However, further onward transmission to additional chicken contacts was only achieved with H5N1-2021. Intra-partridge transmission was only successful when high-dose H5N1-2021 was administered, while partridges inoculated with H5N8-2021 failed to shed and transmit, although extensive tissue tropism was observed for both viruses. Mortalities among infected partridges featured a longer incubation period compared to that in pheasants, for both viruses. Therefore, the susceptibility of different gamebird species and pathogenicity outcomes to the ongoing H5Nx clade 2.3.4.4b HPAIVs varies, but pheasants represent a greater likelihood of H5Nx HPAIV introduction into galliforme poultry settings. Consequently, viral maintenance within gamebird populations and risks to poultry species warrant enhanced investigation.


Asunto(s)
Galliformes , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Animales , Virulencia , Pollos
5.
Vet Pathol ; 61(3): 421-431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140946

RESUMEN

The reemergence of the highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in the United Kingdom in 2021-2022 has caused unprecedented epizootic events in wild birds and poultry. During the summer of 2022, there was a shift in virus transmission dynamics resulting in increased HPAIV infection in seabirds, and consequently, a profound impact on seabird populations. To understand the pathological impact of HPAIV in seabirds, we evaluated the virus antigen distribution and associated pathological changes in the tissues of great skua (Stercorarius skua, n = 8), long-tailed skua (Stercorarius longicaudus, n = 1), European herring gull (Larus argentatus, n = 5), and black-headed gull (Chroicocephalus ridibundus, n = 4), which succumbed to natural infection of HPAIV during the summer of 2022. Cases were collected from Shetland, including Scatness (mainland), No Ness (mainland), Clumlie (mainland), Hermaness (island), Fair Isle (island), Noss (island), and the West Midlands, South East, and South West of England. Grossly, gizzard ulceration was observed in one great skua and pancreatic necrosis was observed in 4 herring gulls, with intralesional viral antigen detected subsequently. Microscopical analysis revealed neuro-, pneumo-, lymphoid-, and cardiomyotropism of HPAIV H5N1, with the most common virus-associated pathological changes being pancreatic and splenic necrosis. Examination of the reproductive tract of the great skua revealed HPAIV-associated oophoritis and salpingitis, and virus replication within the oviductal epithelium. The emergence of HPAIV in seabirds Stercorariidae and Laridae, particularly during summer 2022, has challenged the dogma of HPAIV dynamics, posing a significant threat to wild bird life with potential implications for the reproductive performance of seabirds of conservation importance.


Asunto(s)
Charadriiformes , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Charadriiformes/virología , Gripe Aviar/virología , Gripe Aviar/patología , Gripe Aviar/epidemiología , Reino Unido/epidemiología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Femenino
6.
Microbiol Spectr ; 11(4): e0477622, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358418

RESUMEN

Since 2020, the United Kingdom and Europe have experienced annual epizootics of high-pathogenicity avian influenza virus (HPAIV). The first epizootic, during the autumn/winter of 2020-2021, involved six H5Nx subtypes, although H5N8 HPAIV dominated in the United Kingdom. While genetic assessments of the H5N8 HPAIVs within the United Kingdom demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes.  Following a small number of detections of H5N1 in wild birds over the summer of 2021, the autumn/winter of 2021-2022 saw another European H5 HPAIV epizootic that dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggest that the H5N1 viruses circulating in Europe during late 2020 continued to circulate in wild birds throughout 2021, with minimal adaptation, but then went on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the United Kingdom over two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk, and whether incidents of lateral spread can be defined over independent incursions of infections from wild birds. This provides key supporting data for mitigation activities. IMPORTANCE High-pathogenicity avian influenza virus (HPAIV) outbreaks devastate avian species across all sectors, having both economic and ecological impacts through mortalities in poultry and wild birds, respectively. These viruses can also represent a significant zoonotic risk. Since 2020, the United Kingdom has experienced two successive outbreaks of H5 HPAIV. While H5N8 HPAIV was predominant during the 2020-2021 outbreak, other H5 subtypes were also detected. The following year, there was a shift in the subtype dominance to H5N1 HPAIV, but multiple H5N1 genotypes were detected. Through the thorough utilization of whole-genome sequencing, it was possible to track and characterize the genetic evolution of these H5 HPAIVs in United Kingdom poultry and wild birds. This enabled us to assess the risk posed by these viruses at the poultry-wild bird and the avian-human interfaces and to investigate the potential lateral spread between infected premises, a key factor in understanding the threat to the commercial sector.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Animales Salvajes , Aves , Reino Unido/epidemiología , Aves de Corral , Variación Genética , Filogenia
7.
Viruses ; 15(4)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112981

RESUMEN

Since October 2021, Europe has experienced the largest avian influenza virus (AIV) epizootic, caused by clade 2.3.4.4b H5N1 high pathogenicity AIV (HPAIV), with over 284 poultry infected premises (IPs) and 2480 dead H5N1-positive wild birds detected in Great Britain alone. Many IPs have presented as geographical clusters, raising questions about the lateral spread between premises by airborne particles. Airborne transmission over short distances has been observed for some AIV strains. However, the risk of airborne spread of this strain remains to be elucidated. We conducted extensive sampling from IPs where clade 2.3.4.4b H5N1 HPAIVs were confirmed during the 2022/23 epizootic, each representing a major poultry species (ducks, turkeys, and chickens). A range of environmental samples were collected inside and outside houses, including deposited dust, feathers, and other potential fomites. Viral RNA (vRNA) and infectious viruses were detected in air samples collected from inside and outside but in close proximity to infected houses, with vRNA alone being detected at greater distances (≤10 m) outside. Some dust samples collected outside of the affected houses contained infectious viruses, while feathers from the affected houses, located up to 80 m away, only contained vRNA. Together, these data suggest that airborne particles harboring infectious HPAIV can be translocated short distances (<10 m) through the air, while macroscopic particles containing vRNA might travel further (≤80 m). Therefore, the potential for airborne transmission of clade 2.3.4.4b H5N1 HPAIV between premises is considered low. Other factors, including indirect contact with wild birds and the efficiency of biosecurity, represent greater importance in disease incursion.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Pollos/genética , Virulencia , Virus de la Influenza A/genética , Patos , Animales Salvajes , ARN Viral
8.
Vet Rec ; 191(7): 294-296, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36205958

RESUMEN

This focus article has been prepared by Marco Falchieri, Scott M. Reid, Craig S. Ross, Joe James, Alexander M. P. Byrne, Madalina Zamfir, Ian H. Brown and Ashley C. Banyard of the APHA; Glen Tyler and Emma Philip of NatureScot; and Will Miles of Scottish Oceans Institute, School of Biology, University of St Andrews.


Asunto(s)
Aves , Animales , Causalidad , Océanos y Mares , Reino Unido/epidemiología
9.
Transbound Emerg Dis ; 68(3): 1314-1322, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32794302

RESUMEN

In the present study, one hundred and sixteen partial G gene sequences of Avian metapneumovirus (aMPV) subtype B, obtained during routine diagnostics in different European Countries in the last few years (2014-2019), were analysed by sequence and phylogenetic analyses in order to draw an updated picture of the molecular characteristics of circulating strains. Nucleotide sequences were compared with other sequences of European and non-European aMPV-Bs collected prior to that period or retrieved from GenBank. Phylogenetic relationships among the aMPV-B strains, reconstructed using the maximum likelihood method implemented in MEGA X, demonstrated that aMPV-B has evolved in Europe from its first appearance, frequently displaying a clear relation with the geographic area of detection. The 40% of aMPV-B viruses analysed were classified as vaccine-derived strains, being phylogenetically related, and showing high nucleotide identity with live commercial vaccine strains licensed in Europe. The remaining 60% were classified as field strains since they clustered separately and showed a low nucleotide identity with vaccines and vaccine-derived strains. The phylogenetic tree showed that the virus has continued to evolve from its first appearance in the '80s since more recently detected strains belonged to clades phylogenetically distant from the older strains. Unlike vaccine-derived strains, field strains tended to cluster according to their geographic origin and irrespective of the host species where the viruses had been detected. In conclusion, the molecular characterization of aMPV-B and the differentiation between vaccines and field strains through G gene sequence analysis can be a useful tool towards correct diagnosis and should be routinely applied in order to better address the control strategies.


Asunto(s)
Pollos , Glicoproteínas/genética , Metapneumovirus/genética , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/virología , Pavos , Proteínas Virales/genética , Animales , Europa (Continente) , Galliformes , Glicoproteínas/metabolismo , Metapneumovirus/clasificación , Infecciones por Paramyxoviridae/virología , Filogenia , Proteínas Virales/metabolismo
10.
J Gen Virol ; 97(6): 1324-1332, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26958846

RESUMEN

Avian metapneumovirus (AMPV) infection of poultry causes serious disease in most countries and subtype A reverse-genetic (RG) systems have allowed a generation of viruses of known sequence, and proved useful in developments towards better control by live vaccines. While subtype B viruses are more prevalent, bacterial cloning issues made subtype B RG systems difficult to establish. A molecular comparison of subtype A and B viruses was undertaken to assess whether subtype A RG components could be partially or fully substituted. AMPV subtype A and B gene-end sequences leading to polyadenylation are, to our knowledge, reported for the first time, as well as several leader and trailer sequences. After comparing these alongside previously reported gene starts and protein sequences, it was concluded that subtype B genome copies would be most likely rescued by a subtype A support system, and this assertion was supported when individual subtype A components were successfully substituted. Application of an advanced cloning plasmid permitted eventual completion of a fully subtype B RG system, and proved that all subtype-specific components could be freely exchanged between A and B systems.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Viral , Metapneumovirus/genética , Metapneumovirus/fisiología , Proteínas Virales/genética , Replicación Viral , Clonación Molecular , Expresión Génica , Genotipo , Genética Inversa/métodos
11.
Vaccine ; 31(22): 2565-71, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23588091

RESUMEN

The study investigates the ability of subtype A Avian metapneumovirus (AMPV) to accept foreign genes and be used as a vector for delivery of Infectious bronchitis virus (IBV) QX genes to chickens. Initially the GFP gene was added to AMPV at all gene junctions in conjunction with the development of cassetted full length DNA AMPV copies. After recombinant virus had been recovered by reverse genetics, GFP positions supporting gene expression while maintaining virus viability in vitro, were determined. Subsequently, either S1 or nucleocapsid (N) genes of IBV were positioned between AMPV M and F genes, while later a bivalent recombinant was prepared by inserting S1 and N at AMPV MF and GL junctions respectively. Immunofluorescent antibody staining showed that all recombinants expressed the inserted IBV genes in vitro and furthermore, all recombinant viruses were found to be highly stable during serial passage. Eyedrop inoculation of chickens with some AMPV-IBV recombinants at one-day-old induced protection against virulent IBV QX challenge 3 weeks later, as assessed by greater motility of tracheal cilia from chickens receiving the recombinants. Nonetheless evidence of AMPV/IBV seroconversion, or major recombinant tracheal replication, were largely absent.


Asunto(s)
Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/inmunología , Metapneumovirus/genética , Metapneumovirus/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Animales , Pollos , Chlorocebus aethiops , Proteínas de la Nucleocápside de Coronavirus , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Mutagénesis Insercional , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de la Nucleocápside/biosíntesis , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/inmunología , Infecciones por Paramyxoviridae/genética , Infecciones por Paramyxoviridae/prevención & control , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunación/veterinaria , Células Vero
12.
J Virol Methods ; 186(1-2): 171-5, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22824554

RESUMEN

Using reverse genetics, an avian metapneumovirus (AMPV) was modified for use as a positive control for validating all stages of a popular established RT-nested PCR, used in the detection of the two major AMPV subtypes (A and B). Resultant amplicons were of increased size and clearly distinguishable from those arising from unmodified virus, thus allowing false positive bands, due to control virus contamination of test samples, to be identified readily. Absorption of the control virus onto filter paper and subsequent microwave irradiation removed all infectivity while its function as an efficient RT-nested-PCR template was unaffected. Identical amplicons were produced after storage for one year. The modified virus is likely to have application as an internal standard as well as in real time methods. Additions to AMPV of RNA from other RNA viruses, including hazardous examples such HIV and influenza, are likely to yield similar safe RT-PCR controls.


Asunto(s)
Metapneumovirus/genética , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , Virus ARN/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Animales , Reacciones Falso Positivas , Virus ARN/genética , Sensibilidad y Especificidad , Virología/métodos , Virología/normas
13.
Avian Dis ; 56(4): 720-4, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23397844

RESUMEN

The current information on the prevalence of avian metapneumovirus (aMPV) infection in layers is fragmentary and its true impact on egg production often remains unknown or unclear. In order to draw an epidemiologic picture of aMPV presence in layer flocks in Italy, a survey was performed on 19 flocks of pullets and layers based on longitudinal studies or sporadic samplings. aMPV was detected by reverse transcription (RT)-PCR, and blood samples were collected for serology by aMPV ELISA. Occurrences of respiratory signs and a drop in egg production were recorded. Possible involvement of infectious bronchitis (IB) and egg drop syndrome (EDS) viruses that could have caused loss of egg production we ruled out for IB virus by RT-PCR, and EDS virus was ruled out by hemagglutination-inhibition (HI). Only subtype B of aMPV was found in both pullet and layer farms. Surveys of pullets showed that most groups became infected prior to the onset of lay without showing clear respiratory signs. At the point of lay, these groups were serologically positive to aMPV. In two layer flocks, egg drops were observed and could be strongly linked to the presence of aMPV infection. Results were correlated with aMPV vaccination programs applied to the birds in three flocks on the same farm. Only a vaccination program which included two live and one killed vaccines gave complete protection from aMPV infection to the birds, while a single live vaccine application was not efficacious. The current study gives an inside view of field aMPV diffusion in Italy and its control in layers.


Asunto(s)
Pollos , Metapneumovirus/aislamiento & purificación , Infecciones por Paramyxoviridae/veterinaria , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , Vacunación/métodos , Infecciones por Adenoviridae/diagnóstico , Infecciones por Adenoviridae/epidemiología , Infecciones por Adenoviridae/veterinaria , Animales , Atadenovirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Pruebas de Inhibición de Hemaglutinación/veterinaria , Virus de la Bronquitis Infecciosa/aislamiento & purificación , Italia/epidemiología , Estudios Longitudinales , Metapneumovirus/clasificación , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Paramyxoviridae/prevención & control , Enfermedades de las Aves de Corral/virología , Reproducción , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Pruebas Serológicas/veterinaria , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA