Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(5)2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793636

RESUMEN

Epidemiological studies have shown that HPV-related diseases are the most prevalent sexually transmitted infections. In this context, this report will present various clinical cases demonstrating the effectiveness of Acyclovir (ACV) or its prodrug Valaciclovir (VCV), both acyclic guanosine analogs commonly used for the treatment of HHV-1 and HHV-2, for the treatment of HPV-related diseases. The report shows the remission of five cases of penile condyloma and a case of remission in a woman affected by cervical and vaginal condylomas and a vulvar giant condyloma acuminate of Buschke and Lowenstein. The literature review shows that ACV is effective in treating skin warts when administered orally, topically, and intralesionally, suggesting its therapeutic potential in other diseases associated with HPV. ACV was also used successfully as an adjuvant therapy for juvenile and adult forms of laryngeal papillomatosis, also known as recurrent respiratory papillomatosis, prolonging the patient's symptom-free periods. Although the prevention of HPV infections is certainly achieved with the HPV vaccine, ACV and VCV have shown to be effective even against genotypes not included in the current vaccine and can be helpful for those problematic clinical cases involving unvaccinated individuals, immunocompromised patients, people who live with HIV, or non-responders to the vaccine. We and others concluded that randomized clinical trials are necessary to determine the efficacy of ACV and VCV for HPV-related diseases.


Asunto(s)
Antivirales , Infecciones por Papillomavirus , Adulto , Femenino , Humanos , Masculino , Aciclovir/uso terapéutico , Aciclovir/farmacología , Antivirales/uso terapéutico , Antivirales/farmacología , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/virología , Resultado del Tratamiento , Valaciclovir/uso terapéutico
2.
ACS Omega ; 6(13): 8778-8783, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33842749

RESUMEN

Human papillomavirus (HPV) type 16 is the etiologic agent of more than 50% anal/cervical cancers and about 20% oropharyngeal cancers. HPV16 E6 and E7 oncogenes favor the transformation and are essential for maintaining the transformed status. Serum anti-E6 and anti-E7 antibodies appear to have prognostic significance for HPV-associated cancers. However, most of the previous attempts to establish diagnostic tools based on serum detection of E6 and/or E7 antibodies have been unsuccessful, mainly due to the low accuracy of applied tests. This paper reports on a feasibility study to prove the possibility to easily immobilize HPV16 E7 onto electrospun substrates for application in diagnostic tools. In this study, poly(ε-caprolactone) electrospun scaffolds (called ePCL) are used to provide a microstructured substrate with a high surface-to-volume ratio, capable of binding E7 proteins when used for enzyme-linked immunosorbent assay (ELISA) tests. ePCL functionalized with E7 exhibited superior properties compared to standard polystyrene plates, increasing the detection signal from serum antibodies by 5-6 times. Analysis of the serum samples from mice immunized with HPV16 E7 DNA vaccine showed higher efficiency of this new anti-E7 ePCL-ELISA test vs control in E7-specific antibody detection. In addition, ePCL-E7-ELISA is prepared with a relatively low amount of antigen, decreasing the manufacturing costs.

3.
Cancers (Basel) ; 12(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906275

RESUMEN

The ultraviolet (UV) component of solar radiation is the major driving force of skin carcinogenesis. Most of studies on UV carcinogenesis actually focus on DNA damage while their proteome-damaging ability and its contribution to skin carcinogenesis have remained largely underexplored. A redox proteomic analysis of oxidized proteins in solar-induced neoplastic skin lesion and perilesional areas has been conducted showing that the protein oxidative burden mostly concerns a selected number of proteins participating to a defined set of functions, namely: chaperoning and stress response; protein folding/refolding and protein quality control; proteasomal function; DNA damage repair; protein- and vesicle-trafficking; cell architecture, adhesion/extra-cellular matrix (ECM) interaction; proliferation/oncosuppression; apoptosis/survival, all of them ultimately concurring either to structural damage repair or to damage detoxication and stress response. In peri-neoplastic areas the oxidative alterations are conducive to the persistence of genetic alterations, dysfunctional apoptosis surveillance, and a disrupted extracellular environment, thus creating the condition for transformant clones to establish, expand and progress. A comparatively lower burden of oxidative damage is observed in neoplastic areas. Such a finding can reflect an adaptive selection of best fitting clones to the sharply pro-oxidant neoplastic environment. In this context the DNA damage response appears severely perturbed, thus sustaining an increased genomic instability and an accelerated rate of neoplastic evolution. In conclusion UV radiation, in addition to being a cancer-initiating agent, can act, through protein oxidation, as a cancer-promoting agent and as an inducer of genomic instability concurring with the neoplastic progression of established lesions.

4.
Photochem Photobiol ; 96(1): 74-82, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769510

RESUMEN

The ultraviolet (UV) component of solar radiation is the driving force of life on earth, but it can cause photoaging and skin cancer. In this study, we investigated the effects of the glucosamine-derivative 2-(N-Acetyl)-L-phenylalanylamido-2-deoxy-ß-D-glucose (NAPA) on human primary fibroblasts (FBs) stimulated in vitro with environmental levels of UVB radiation. FBs were irradiated with 0.04 J cm-2 UVB dose, which resulted a mild dosage as shown by the cell viability and ROS production measurement. This environmental UVB dose induced activation of MAP kinase ERK 1/2, the stimulation of c-fos and at lower extent of c-jun, and in turn AP-1-dependent up-regulation of pro-inflammatory factors IL-6 and IL-8 and suppression of collagen type I expression. On the contrary, 0.04 J cm-2 UVB dose was not able to stimulate metalloprotease production. NAPA treatment was able to suppress the up-regulation of IL-6 and IL-8 via the inhibition of MAP kinase ERK phosphorylation and the following AP-1 activation, and was able to attenuate the collagen type I down-regulation induced by the UVBs. Taken together, our results show that NAPA, considering its dual action on suppression of inflammation and stimulation of collagen type I production, represents an interesting candidate as a new photoprotective and photorepairing agents.


Asunto(s)
Colágeno/metabolismo , Diploidia , Glucosamina/análogos & derivados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Rayos Ultravioleta , Activación Enzimática/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Glucosamina/farmacología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...