Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 2(7): 2977-2985, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36132410

RESUMEN

Building blocks of photonic integrated circuitry (PIC), optical waveguides, have long been considered transparent. However, the inevitable Fresnel reflection from waveguide facets limits their transparency. This limitation becomes more severe in high-index waveguides in which the transparency may drop to 65%. We overcome this inherent optical property of high-index waveguides by engineering an appropriate facet landscape made of sub-wavelength artificial features unit cells. For this, we develop a semi-analytical formalism for predicting the metasurface parameters made of high-index dielectric materials, to be engraved on the facets of optical waveguides, based on Babinet's principle: either extruded from the waveguide facet or etched into it. Our semi-analytical model predicts the shape of anti-reflective metasurface unit cells to achieve transmission as high as 98.5% in near-infrared from 1 µm to 2 µm. This new class of metasurfaces may be used for the improvement of PIC devices for communication and sensing, where device transparency is crucial for high signal-to-noise ratios.

2.
Sci Rep ; 7(1): 12076, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935980

RESUMEN

A new, composite plasmonic waveguide based electromagnetic cloaking scheme is proposed with Si nano-spacer. Here we show, that the scattering fields of an object located on the cloak do not interact with the evanescent field, resulting in object's invisibility. Finite difference time domain (FDTD) numerical calculations were performed to extract the modal distributions and surface intensities on a composite plasmonic waveguide with a metasurface overlayer. Spatially varying effective permittivity was analytically calculated using transformation optics. Cloaking was demonstrated for a cylindrical object with diameter of 70% from the waveguide width on a high index ridge waveguide structure with silicon nitride guiding layer on silica substrate. Our results open the door to new integrated photonic devices, harnessing from evanescent fields distortion on composite plasmonic waveguides and dielectric nano-spacers for the variety of applications from on-chip optical devices to all-optical processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA