Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 537, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796535

RESUMEN

Traits with intuitive names, a clear scope and explicit description are essential for all trait databases. The lack of unified, comprehensive, and machine-readable plant trait definitions limits the utility of trait databases, including reanalysis of data from a single database, or analyses that integrate data across multiple databases. Both can only occur if researchers are confident the trait concepts are consistent within and across sources. Here we describe the AusTraits Plant Dictionary (APD), a new data source of terms that extends the trait definitions included in a recent trait database, AusTraits. The development process of the APD included three steps: review and formalisation of the scope of each trait and the accompanying trait description; addition of trait metadata; and publication in both human and machine-readable forms. Trait definitions include keywords, references, and links to related trait concepts in other databases, enabling integration of AusTraits with other sources. The APD will both improve the usability of AusTraits and foster the integration of trait data across global and regional plant trait databases.


Asunto(s)
Plantas , Bases de Datos Factuales , Diccionarios como Asunto
3.
Am Nat ; 198(2): 253-267, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34260875

RESUMEN

AbstractIn community ecology, it is widely assumed that organisms with similar traits compete more intensely with one another for resources. This assumption is often encoded into theory and empirical tests via a unimodal competition function, which predicts that per capita competitive effect declines with separation in traits. Yet it remains unknown how well this function represents the true effect of traits on competitive outcomes, especially for long-lived plant communities, where lifetime fitness is difficult to estimate. Here, we evaluate the shape of competition functions embedded in two resource-based (RB) models, wherein plants compete for shared, essential resources. In the first RB model individuals compete for two essential nutrients, and in the second they compete for light in a size-based successional setting. We compared the shapes of the competition functions that emerged from interactions within these RB models to the unimodal function and others shapes commonly applied. In few instances did the trait-based competition function emerging from the RB model even vaguely resemble any of the shapes previously used. The mismatch between these two approaches suggests that theory derived using fixed competition functions based on trait separation may not apply well to plant systems, where individuals compete for shared resources. The more promising path will be to model depletion of resources by populations in relation to their traits, with its consequences for fitness landscapes and competitive exclusion.


Asunto(s)
Ecología , Plantas , Humanos , Fenotipo
4.
PLoS One ; 16(4): e0249993, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33909643

RESUMEN

Ever since the web began, the number of websites has been growing exponentially. These websites cover an ever-increasing range of online services that fill a variety of social and economic functions across a growing range of industries. Yet the networked nature of the web, combined with the economics of preferential attachment, increasing returns and global trade, suggest that over the long run a small number of competitive giants are likely to dominate each functional market segment, such as search, retail and social media. Here we perform a large scale longitudinal study to quantify the distribution of attention given in the online environment to competing organisations. In two large online social media datasets, containing more than 10 billion posts and spanning more than a decade, we tally the volume of external links posted towards the organisations' main domain name as a proxy for the online attention they receive. We also use the Common Crawl dataset-which contains the linkage patterns between more than a billion different websites-to study the patterns of link concentration over the past three years across the entire web. Lastly, we showcase the linking between economic, financial and market data by exploring the relationships between online attention on social media and the growth in enterprise value in the electric carmaker Tesla. Our analysis shows that despite the fact that we observe consistent growth in all the macro indicators-the total amount of online attention, in the number of organisations with an online presence, and in the functions they perform-we also observe that a smaller number of organisations account for an ever-increasing proportion of total user attention, usually with one large player dominating each function. These results highlight how evolution of the online economy involves innovation, diversity, and then competitive dominance.


Asunto(s)
Mercadotecnía/economía , Navegador Web/economía , Evolución Cultural , Humanos , Industrias/economía , Medios de Comunicación Sociales/economía
5.
Proc Biol Sci ; 288(1946): 20202830, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33653143

RESUMEN

If collecting research data is perceived as poorly rewarded compared to data synthesis and analysis, this can slow overall research progress via two effects. People who have already collected data may be slow to make it openly accessible. Also, researchers may reallocate effort from collecting fresh data to synthesizing and analysing data already accessible. Here, we advocate for a second career currency in the form of data contributions statements embedded within applications for jobs, promotions and research grants. This workable step forward would provide for peer opinion to operate across thousands of selection and promotion committees and granting panels. In this way, fair valuation of data contributions relative to publications could emerge.


Asunto(s)
Investigadores , Humanos
6.
Elife ; 92020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33198888

RESUMEN

Biomedical and clinical sciences are experiencing a renewed interest in the fact that males and females differ in many anatomic, physiological, and behavioural traits. Sex differences in trait variability, however, are yet to receive similar recognition. In medical science, mammalian females are assumed to have higher trait variability due to estrous cycles (the 'estrus-mediated variability hypothesis'); historically in biomedical research, females have been excluded for this reason. Contrastingly, evolutionary theory and associated data support the 'greater male variability hypothesis'. Here, we test these competing hypotheses in 218 traits measured in >26,900 mice, using meta-analysis methods. Neither hypothesis could universally explain patterns in trait variability. Sex bias in variability was trait-dependent. While greater male variability was found in morphological traits, females were much more variable in immunological traits. Sex-specific variability has eco-evolutionary ramifications, including sex-dependent responses to climate change, as well as statistical implications including power analysis considering sex difference in variance.


Males and females differ in appearance, physiology and behavior. But we do not fully understand the health and evolutionary consequences of these differences. One reason for this is that, until recently, females were often excluded from medical studies. This made it difficult to know if a treatment would perform as well in females as males. To correct this, organizations that fund research now require scientists to include both sexes in studies. This has led to some questions about how to account for sex differences in studies. One reason females have historically been excluded from medical studies is that some scientists assumed that they would have more variable responses to a particular treatment based on their estrous cycles. Other scientists, however, believe that males of a given species might be more variable because of the evolutionary pressures they face in competing for mates. Better understanding how males and females vary would help scientists better design studies to ensure they provide accurate answers. Now, Zajitschek et al. debunk both the idea that males are more variable and the idea that females are more variable. To do this, Zajitschek et al. analyzed differences in 218 traits, like body size or certain behaviors, among nearly 27,000 male and female mice. This showed that neither male mice nor female mice were universally more different from other mice of their sex across all features. Instead, sex differences in how much variation existed in male or female mice depended on the individual trait. For example, males varied more in physical features like size, while females showed more differences in their immune systems. The results suggest it is particularly important to consider sex-specific variability in both medical and other types of studies. To help other researchers better design experiments to factor in such variability, Zajitschek et al. created an interactive tool that will allow scientists to look at sex-based differences in individual features among male or female mice.


Asunto(s)
Evolución Biológica , Ecosistema , Caracteres Sexuales , Animales , Bases de Datos Factuales , Femenino , Masculino , Ratones
8.
Nat Ecol Evol ; 4(3): 294-303, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066887

RESUMEN

Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges.


Asunto(s)
Biodiversidad , Ecología , Evolución Biológica , Fenotipo , Investigación
9.
Gigascience ; 8(5)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042286

RESUMEN

The sharing and re-use of data has become a cornerstone of modern science. Multiple platforms now allow easy publication of datasets. So far, however, platforms for data sharing offer limited functions for distributing and interacting with evolving datasets- those that continue to grow with time as more records are added, errors fixed, and new data structures are created. In this article, we describe a workflow for maintaining and distributing successive versions of an evolving dataset, allowing users to retrieve and load different versions directly into the R platform. Our workflow utilizes tools and platforms used for development and distribution of successive versions of an open source software program, including version control, GitHub, and semantic versioning, and applies these to the analogous process of developing successive versions of an open source dataset. Moreover, we argue that this model allows for individual research groups to achieve a dynamic and versioned model of data delivery at no cost.


Asunto(s)
Biología Computacional , Difusión de la Información , Programas Informáticos , Humanos , Flujo de Trabajo
10.
Proc Natl Acad Sci U S A ; 115(49): 12459-12464, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30446609

RESUMEN

Tree death drives population dynamics, nutrient cycling, and evolution within plant communities. Mortality variation across species is thought to be influenced by different factors relative to variation within species. The unified model provided here separates mortality rates into growth-dependent and growth-independent hazards. This model creates the opportunity to simultaneously estimate these hazards both across and within species. Moreover, it provides the ability to examine how species traits affect growth-dependent and growth-independent hazards. We derive this unified mortality model using cross-validated Bayesian methods coupled with mortality data collected over three census intervals for 203 tropical rainforest tree species at Barro Colorado Island (BCI), Panama. We found that growth-independent mortality tended to be higher in species with lower wood density, higher light requirements, and smaller maximum diameter at breast height (dbh). Mortality due to marginal carbon budget as measured by near-zero growth rate tended to be higher in species with lower wood density and higher light demand. The total mortality variation attributable to differences among species was large relative to variation explained by these traits, emphasizing that much remains to be understood. This additive hazards model strengthens our capacity to parse and understand individual-level mortality in highly diverse tropical forests and hence to predict its consequences.


Asunto(s)
Bosque Lluvioso , Árboles/crecimiento & desarrollo , Islas , Longevidad , Panamá , Especificidad de la Especie
11.
Ecol Evol ; 8(16): 8149-8158, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30250691

RESUMEN

Large variations in crown shape are observed across the globe, from plants with wide and deep crowns to those with leaves clustered at the top. While there have been advances in the large-scale monitoring of forests, little is known about factors driving variations in crown shape with environmental conditions. Previous theoretical research suggests a gradient in crown shape with latitude, due to the effects of sun angle. Yet, it remains unclear whether such changes are also predicted under competition. Using a size-structured forest-growth model that incorporates self-shading from plants and competitive shading from their neighbors, we investigate how changes in site productivity and sun angle shape crown evolution. We consider evolution in two traits describing the top-heaviness and width-to-height ratio of crowns, shaped by trade-offs reflecting the costs and benefits of alternative architectures. In top-heavy trees, most of the leaves are at the top half of the trunk. We show that, contrary to common belief, the angle of sun beams per se has only a weak influence on crown shapes, except at low site productivity. By contrast, reduced site productivity has a strong effect, with trees growing in less productive sites keeping their leaves closer to the ground. The crown width-to-height ratio is generally higher at a lower site productivity, but this trait is not strongly influenced by any environmental factor. This theoretical analysis brings into question established beliefs about the effects of latitude on crown shapes. By introducing geometry-related growth constraints caused by shading from both the surrounding forest and the tree on itself, and costs for constructing and maintaining a three-dimensional crown, our analysis suggests crown shapes may vary with latitude, mostly via effects on overall site productivity, and less because of the angle of the sun.

12.
Proc Natl Acad Sci U S A ; 115(29): E6789-E6798, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29959205

RESUMEN

Plant species differ in many functional traits that drive differences in rates of photosynthesis, biomass allocation, and tissue turnover. However, it remains unclear how-and even if-such traits influence whole-plant growth, with the simple linear relationships predicted by existing theory often lacking empirical support. Here, we present a theoretical framework for understanding the effect of diverse functional traits on plant growth and shade tolerance by extending a widely used model, linking growth rate in seedlings with a single leaf trait, to explicitly include influences of size, light environment, and five prominent traits: seed mass, height at maturation, leaf mass per unit leaf area, leaf nitrogen per unit leaf area, and wood density. Based on biomass growth and allocation, this framework explains why the influence of traits on growth rate and shade tolerance often varies with plant size and why the impact of size on growth varies among traits. Specifically, we demonstrate why for height growth the influence of: (i) leaf mass per unit leaf area is strong in small plants but weakens with size; (ii) leaf nitrogen per unit leaf area does not change with size; (iii) wood density is present across sizes; (iv) height at maturation strengthens with size; and (v) seed mass decreases with size. Moreover, we show how traits moderate plant responses to light environment and also determine shade tolerance, supporting diverse empirical results.


Asunto(s)
Adaptación Biológica/fisiología , Modelos Biológicos , Desarrollo de la Planta/fisiología , Plantas/genética , Carácter Cuantitativo Heredable
14.
Am Nat ; 192(1): E37-E47, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29897799

RESUMEN

Branch formation in trees has an inherent tendency toward exponential growth, but exponential growth in the number of branches cannot continue indefinitely. It has been suggested that trees balance this tendency toward expansion by also losing branches grown in previous growth cycles. Here, we present a model for branch formation and branch loss during ontogeny that builds on the phenomenological assumption of a branch carrying capacity. The model allows us to derive approximate analytical expressions for the number of tips on a branch, the distribution of growth modules within a branch, and the rate and size distribution of tree wood litter produced. Although limited availability of data makes empirical corroboration challenging, we show that our model can fit field observations of red maple (Acer rubrum) and note that the age distribution of discarded branches predicted by our model is qualitatively similar to an empirically observed distribution of dead and abscised branches of balsam poplar (Populus balsamifera). By showing how a simple phenomenological assumption-that the number of branches a tree can maintain is limited-leads directly to predictions on branching structure and the rate and size distribution of branch loss, these results potentially enable more explicit modeling of woody tissues in ecosystems worldwide, with implications for the buildup of flammable fuel, nutrient cycling, and understanding of plant growth.


Asunto(s)
Modelos Biológicos , Árboles/crecimiento & desarrollo , Acer , Populus , Madera
15.
Tree Physiol ; 38(9): 1384-1393, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29534227

RESUMEN

Allocation of carbohydrates between competing organs is fundamental to plant development, growth and productivity. Carbohydrates are synthesized in mature leaves and distributed via the phloem vasculature to developing buds where they are consumed to produce new biomass. The distribution and mass-allocation processes within the plant remain poorly understood and may involve complex feedbacks between different plant functions, with implications for the emergent structure of the plant. Here, we investigate how the order in which dormant buds are flushed affects the development of tree size and reproductive output during the first 20 years of growth in full light and shaded canopy environments. We report the following findings: (i) Bud-flushing strategies strongly affect the temporal dynamics of height, mass and the size of reproduction pool, as well as the resulting architectures. (ii) Bud-flushing strategies affect tree growth by altering the rate of growth and final size of trees. (iii) No single bud-flushing strategy performs best when both the size and allocation for reproduction of the resulting trees are compared. However, we observe that the strategy that optimizes the net carbon gain for the entire tree architecture always results in a high reproduction output. (iv) Branch turnover and meristem regeneration enhance the performance of certain strategies with respect to the measured quantities. These results highlight the importance of employing generic models of architecture (i.e., non-species-specific) to identify general mechanisms of carbon allocation and the spatial distribution of newly formed biomass in growing trees.


Asunto(s)
Modelos Biológicos , Hojas de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Carbono/metabolismo , Luz , Meristema/crecimiento & desarrollo , Árboles/anatomía & histología
17.
Proc Natl Acad Sci U S A ; 114(13): E2719-E2728, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28283658

RESUMEN

To explain diversity in forests, niche theory must show how multiple plant species coexist while competing for the same resources. Although successional processes are widespread in forests, theoretical work has suggested that differentiation in successional strategy allows only a few species stably to coexist, including only a single shade tolerant. However, this conclusion is based on current niche models, which encode a very simplified view of plant communities, suggesting that the potential for niche differentiation has remained unexplored. Here, we show how extending successional niche models to include features common to all vegetation-height-structured competition for light under a prevailing disturbance regime and two trait-mediated tradeoffs in plant function-enhances the diversity of species that can be maintained, including a diversity of shade tolerants. We identify two distinct axes of potential niche differentiation, corresponding to the traits leaf mass per unit leaf area and height at maturation. The first axis allows for coexistence of different shade tolerances and the second axis for coexistence among species with the same shade tolerance. Addition of this second axis leads to communities with a high diversity of shade tolerants. Niche differentiation along the second axis also generates regions of trait space wherein fitness is almost equalized, an outcome we term "evolutionarily emergent near-neutrality." For different environmental conditions, our model predicts diverse vegetation types and trait mixtures, akin to observations. These results indicate that the outcomes of successional niche differentiation are richer than previously thought and potentially account for mixtures of traits and species observed in forests worldwide.


Asunto(s)
Biodiversidad , Bosques , Modelos Teóricos , Dinámica Poblacional
18.
New Phytol ; 212(2): 368-76, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27241462

RESUMEN

Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models.


Asunto(s)
Biomasa , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Madera/fisiología , Clima , Tallos de la Planta/fisiología
19.
Sci Data ; 3: 160017, 2016 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-27023900

RESUMEN

Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.


Asunto(s)
Antozoos , Bases de Datos Factuales , Animales , Arrecifes de Coral , Ecosistema , Océanos y Mares , Filogenia
20.
Trends Ecol Evol ; 31(6): 419-428, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26969335

RESUMEN

Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been hampered by a paucity of trait data for the many, often rare, species and by a reliance on nonquantitative approaches. Therefore, we propose filling data gaps by prioritizing traits that are easy to measure, estimating key traits for species with missing data, and identifying 'supertraits' that capture a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems.


Asunto(s)
Arrecifes de Coral , Ecosistema , Animales , Antozoos , Ecología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...