Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Nat Commun ; 15(1): 2567, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38519469

Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Killer Cells, Natural , Smad3 Protein/genetics , Smad3 Protein/metabolism , Bromodomain Containing Proteins
2.
Nat Commun ; 15(1): 828, 2024 Jan 27.
Article En | MEDLINE | ID: mdl-38280853

Caloric Restriction (CR) has established anti-cancer effects, but its clinical relevance and molecular mechanism remain largely undefined. Here, we investigate CR's impact on several mouse models of Acute Myeloid Leukemias, including Acute Promyelocytic Leukemia, a subtype strongly affected by obesity. After an initial marked anti-tumor effect, lethal disease invariably re-emerges. Initially, CR leads to cell-cycle restriction, apoptosis, and inhibition of TOR and insulin/IGF1 signaling. The relapse, instead, is associated with the non-genetic selection of Leukemia Initiating Cells and the downregulation of double-stranded RNA (dsRNA) sensing and Interferon (IFN) signaling genes. The CR-induced adaptive phenotype is highly sensitive to pharmacological or genetic ablation of LSD1, a lysine demethylase regulating both stem cells and dsRNA/ IFN signaling. CR + LSD1 inhibition leads to the re-activation of dsRNA/IFN signaling, massive RNASEL-dependent apoptosis, and complete leukemia eradication in ~90% of mice. Importantly, CR-LSD1 interaction can be modeled in vivo and in vitro by combining LSD1 ablation with pharmacological inhibitors of insulin/IGF1 or dual PI3K/MEK blockade. Mechanistically, insulin/IGF1 inhibition sensitizes blasts to LSD1-induced death by inhibiting the anti-apoptotic factor CFLAR. CR and LSD1 inhibition also synergize in patient-derived AML and triple-negative breast cancer xenografts. Our data provide a rationale for epi-metabolic pharmacologic combinations across multiple tumors.


Insulins , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Caloric Restriction , Leukemia, Myeloid, Acute/pathology , Histone Demethylases/genetics , Neoplastic Stem Cells/pathology , Cell Line, Tumor
3.
Cancer Prev Res (Phila) ; 17(2): 59-75, 2024 02 02.
Article En | MEDLINE | ID: mdl-37956420

Risk and outcome of acute promyelocytic leukemia (APL) are particularly worsened in obese-overweight individuals, but the underlying molecular mechanism is unknown. In established mouse APL models (Ctsg-PML::RARA), we confirmed that obesity induced by high-fat diet (HFD) enhances leukemogenesis by increasing penetrance and shortening latency, providing an ideal model to investigate obesity-induced molecular events in the preleukemic phase. Surprisingly, despite increasing DNA damage in hematopoietic stem cells (HSC), HFD only minimally increased mutational load, with no relevant impact on known cancer-driving genes. HFD expanded and enhanced self-renewal of hematopoietic progenitor cells (HPC), with concomitant reduction in long-term HSCs. Importantly, linoleic acid, abundant in HFD, fully recapitulates the effect of HFD on the self-renewal of PML::RARA HPCs through activation of peroxisome proliferator-activated receptor delta, a central regulator of fatty acid metabolism. Our findings inform dietary/pharmacologic interventions to counteract obesity-associated cancers and suggest that nongenetic factors play a key role. PREVENTION RELEVANCE: Our work informs interventions aimed at counteracting the cancer-promoting effect of obesity. On the basis of our study, individuals with a history of chronic obesity may still significantly reduce their risk by switching to a healthier lifestyle, a concept supported by evidence in solid tumors but not yet in hematologic malignancies. See related Spotlight, p. 47.


Leukemia, Promyelocytic, Acute , PPAR delta , Animals , Mice , Cathepsin G , Diet, High-Fat/adverse effects , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Obesity/complications , Oncogene Proteins, Fusion/genetics , PPAR delta/therapeutic use
4.
Stem Cells ; 42(1): 42-54, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-37798139

Bone marrow microenvironmental stimuli profoundly impact hematopoietic stem cell fate and biology. As G protein-coupled receptors, the bitter taste receptors (TAS2Rs) are key in transmitting extracellular stimuli into an intracellular response, within the oral cavity but also in extraoral tissues. Their expression in the bone marrow (BM)-derived cells suggests their involvement in sensing the BM microenvironmental fluctuation. In the present study, we demonstrated that umbilical cord blood (UCB)-derived CD34+ cells express fully functional TAS2Rs along with the signal transduction cascade components and their activation by the prototypical agonist, denatonium benzoate, significantly modulated genes involved in stemness maintenance and regulation of cell trafficking. The activation of these specific pathways was confirmed in functional in vitro experiments. Denatonium exposure exerted an antiproliferative effect on UCB-derived CD34+ cells, mainly affecting the most undifferentiated progenitor frequency. It also reduced their clonogenicity and repopulating potential in vitro. In addition, the TAS2R signaling activation impaired the UCB-derived CD34+ cell trafficking, mainly reducing the migration toward the chemoattractant agent CXCL12 and modulating the expression of the adhesion molecules CD62L, CD49d, and CD29. In conclusion, our results in UCB-derived CD34+ cells expand the observation of TAS2R expression in the setting of BM-resident cells and shed light on the role of TAS2Rs in the extrinsic regulation of hematopoietic stem cell functions.


Hematopoietic Stem Cells , Taste , Hematopoietic Stem Cells/metabolism , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Antigens, CD34/metabolism
5.
Cancer Lett ; 577: 216441, 2023 11 28.
Article En | MEDLINE | ID: mdl-37806515

Chemotherapeutic agents have profound effects on cancer, stroma and immune cells that - in most cases - depend upon the dosage and schedule of administration. Preclinical and clinical studies summarized and discussed in the present review have demonstrated that maximum tolerable dosage (MTD) vs low-dosage, continuous (metronomic) administration of most chemotherapeutics have polarized effects on immune cells. In particular, metronomic schedules might be associated - among others effects - with activation of antigen presenting cells and generation of new T cell clones to enhance the activity of several types of immunotherapies. Ongoing and planned clinical trials in different types of cancer will confirm or dismiss this hypothesis and provide candidate biomarker data for the selection of patients who are likely to benefit from these combinatorial strategies.


Antineoplastic Combined Chemotherapy Protocols , Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/pharmacology , T-Lymphocytes , Neoplasms/drug therapy , Administration, Metronomic , Antigen-Presenting Cells
6.
Cancer Res ; 83(13): 2155-2170, 2023 07 05.
Article En | MEDLINE | ID: mdl-37133448

Metastatic breast cancer has a poor prognosis and is largely considered incurable. A better understanding of the molecular determinants of breast cancer metastasis could facilitate development of improved prevention and treatment strategies. We used lentiviral barcoding coupled to single-cell RNA sequencing to trace clonal and transcriptional evolution during breast cancer metastasis and showed that metastases derive from rare prometastatic clones that are underrepresented in primary tumors. Both low clonal fitness and high metastatic potential were independent of clonal origin. Differential expression and classification analyses revealed that the prometastatic phenotype was acquired by rare cells characterized by the concomitant hyperactivation of extracellular matrix remodeling and dsRNA-IFN signaling pathways. Notably, genetic silencing of key genes in these pathways (KCNQ1OT1 or IFI6, respectively) significantly impaired migration in vitro and metastasis in vivo, with marginal effects on cell proliferation and tumor growth. Gene expression signatures derived from the identified prometastatic genes predict metastatic progression in patients with breast cancer, independently of known prognostic factors. This study elucidates previously unknown mechanisms of breast cancer metastasis and provides prognostic predictors and therapeutic targets for metastasis prevention. SIGNIFICANCE: Transcriptional lineage tracing coupled with single-cell transcriptomics defined the transcriptional programs underlying metastatic progression in breast cancer, identifying prognostic signatures and prevention strategies.


Gene Expression Profiling , Signal Transduction , Humans , Cell Line, Tumor , Signal Transduction/genetics , Prognosis , Extracellular Matrix/genetics , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic
7.
J Clin Med ; 12(7)2023 Mar 27.
Article En | MEDLINE | ID: mdl-37048617

We have previously shown in triple-negative breast cancer (TNBC) models that a triple therapy (TT) including intermittent cyclophosphamide (C), vinorelbine (V), and anti-PD-1 activates antigen-presenting cells (APC) and generates stem like-T cells able to control local and metastatic tumor progression. In the present manuscript, we report the generation of a highly aggressive, anti-PD-1 resistant model of a high-grade, Myc-driven B-cell non-Hodgkin's lymphoma (NHL) that can be controlled in vivo by TT but not by other chemotherapeutic agents, including cytarabine (AraC), platinum (P), and doxorubicin (D). The immunological memory elicited in tumor-bearing mice by TT (but not by other treatments) can effectively control NHL re-challenge even at very high inoculum doses. TT re-shaped the landscape of circulating innate NK cells and adaptive immune cells, including B and T cells, and significantly reduced exhausted CD4+ and CD8+ TIM3+PD-1+ T cells in the spleens of treated mice.

8.
Cell Death Discov ; 8(1): 106, 2022 Mar 08.
Article En | MEDLINE | ID: mdl-35260564

Breast cancer (BC) constitutes a major health problem worldwide, making it the most common malignancy in women. Current treatment options for BC depend primarily on histological type, molecular markers, clinical aggressiveness and stage of disease. Immunotherapy, such as αPD-1, have shown combinatorial clinical activity with chemotherapy in triple negative breast cancer (TNBC) delineating some therapeutic combinations as more effective than others. However, a clear overview of the main immune cell populations involved in these treatments has never been provided.Here, an assessment of the immune landscape in the tumor microenvironment (TME) of two TNBC mouse models has been performed using single-cell RNA sequencing technology. Specifically, immune cells were evaluated in untreated conditions and after treatments with chemotherapy or immunotherapy used as single agents or in combination. A decrease of Treg was found in treatments with in vivo efficacy as well as γδ T cells, which have a pro-tumoral activity in mice. Focusing on Cd8 T cells, across all the conditions, a general increase of exhausted-like Cd8 T cells was confirmed in pre-clinical treatments with low efficacy and an opposite trend was found for the proliferative Cd8 T cells. Regarding macrophages, M2-like cells were enriched in treatments with low efficacy while M1-like macrophages followed an opposite trend. For both models, similar proportions of B cells were detected with an increase of proliferative B cells in treatments involving cisplatin in combination with αPD-1. The fine-scale characterization of the immune TME in this work can lead to new insights on the diagnosis and treatment of TNBC.

9.
Sci Rep ; 12(1): 3234, 2022 02 25.
Article En | MEDLINE | ID: mdl-35217717

Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.


Antineoplastic Agents , Leukemia , Tumor Suppressor Protein p53 , Antineoplastic Agents/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukemia/immunology , Leukemia/metabolism , Ligands , NK Cell Lectin-Like Receptor Subfamily K/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Tumor Suppressor Protein p53/immunology , Tumor Suppressor Protein p53/metabolism
10.
Sci Rep ; 12(1): 1341, 2022 01 25.
Article En | MEDLINE | ID: mdl-35079096

Solid tumor cells have an altered metabolism that can protect them from cytotoxic lymphocytes. The anti-diabetic drug metformin modifies tumor cell metabolism and several clinical trials are testing its effectiveness for the treatment of solid cancers. The use of metformin in hematologic cancers has received much less attention, although allogeneic cytotoxic lymphocytes are very effective against these tumors. We show here that metformin induces expression of Natural Killer G2-D (NKG2D) ligands (NKG2DL) and intercellular adhesion molecule-1 (ICAM-1), a ligand of the lymphocyte function-associated antigen 1 (LFA-1). This leads to enhance sensitivity to cytotoxic lymphocytes. Overexpression of anti-apoptotic Bcl-2 family members decrease both metformin effects. The sensitization to activated cytotoxic lymphocytes is mainly mediated by the increase on ICAM-1 levels, which favors cytotoxic lymphocytes binding to tumor cells. Finally, metformin decreases the growth of human hematological tumor cells in xenograft models, mainly in presence of monoclonal antibodies that recognize tumor antigens. Our results suggest that metformin could improve cytotoxic lymphocyte-mediated therapy.


Intercellular Adhesion Molecule-1/physiology , Metformin/pharmacology , Neoplasms/drug therapy , Animals , Humans , Killer Cells, Natural , Male , Mice , Mice, Inbred NOD , Tumor Cells, Cultured
11.
Leukemia ; 36(1): 197-209, 2022 01.
Article En | MEDLINE | ID: mdl-34304248

Standard chemotherapies for diffuse large B-cell lymphoma (DLBCL), based on the induction of exogenous DNA damage and oxidative stress, are often less effective in the presence of increased MYC and BCL-2 levels, especially in the case of double hit (DH) lymphomas harboring rearrangements of the MYC and BCL-2 oncogenes, which enrich for a patient's population characterized by refractoriness to anthracycline-based chemotherapy. Here we hypothesized that adaptive mechanisms to MYC-induced replicative and oxidative stress, consisting in DNA damage response (DDR) activation and BCL-2 overexpression, could represent the biologic basis of the poor prognosis and chemoresistance observed in MYC/BCL-2-positive lymphoma. We first integrated targeted gene expression profiling (T-GEP), fluorescence in situ hybridization (FISH) analysis, and characterization of replicative and oxidative stress biomarkers in two independent DLBCL cohorts. The presence of oxidative DNA damage biomarkers identified a poor prognosis double expresser (DE)-DLBCL subset, characterized by relatively higher BCL-2 gene expression levels and enrichment for DH lymphomas. Based on these findings, we tested therapeutic strategies based on combined DDR and BCL-2 inhibition, confirming efficacy and synergistic interactions in in vitro and in vivo DH-DLBCL models. These data provide the rationale for precision-therapy strategies based on combined DDR and BCL-2 inhibition in DH or DE-DLBCL.


Bridged Bicyclo Compounds, Heterocyclic/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Gene Expression Regulation, Leukemic/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfonamides/pharmacology , Thiophenes/pharmacology , Urea/analogs & derivatives , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Therapy, Combination , Female , Follow-Up Studies , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Prognosis , Prospective Studies , Retrospective Studies , Survival Rate , Urea/pharmacology , Young Adult
12.
Life (Basel) ; 11(11)2021 Oct 24.
Article En | MEDLINE | ID: mdl-34833007

Disease relapse caused by drug resistance still represents a major clinical hurdle in cancer treatments. Tumor cells may take advantage of different intracellular and genetic systems attenuating the drug effects. Resistant cells or minimal residual disease (MRD) cells have strong clinical relevance, as they might give rise to secondary tumors when the therapy is concluded. Thus, MRDs are crucial therapeutic targets in order to prevent tumor relapse. Therefore, several groups aim at understanding how MRDs are orginated, characterizing their molecular features, and eradicating them. In this review, we will describe MRD from a genetic, evolutionary, and molecular point of view. Moreover, we will focus on the new in vitro, in vivo, preclinical, and clinical studies that aim at eradicating tumor resistance.

14.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article En | MEDLINE | ID: mdl-33572982

The incidence and severity of obesity are rising in most of the world. In addition to metabolic disorders, obesity is associated with an increase in the incidence and severity of a variety of types of cancer, including breast cancer (BC). The bidirectional interaction between BC and adipose cells has been deeply investigated, although the molecular and cellular players involved in these mechanisms are far from being fully elucidated. Here, we review the current knowledge on these interactions and describe how preclinical research might be used to clarify the effects of obesity over BC progression and morbidity, with particular attention paid to promising therapeutic interventions.


Adipose Tissue/pathology , Breast Neoplasms/pathology , Obesity/pathology , Adipose Tissue/metabolism , Animals , Breast Neoplasms/complications , Breast Neoplasms/metabolism , Disease Models, Animal , Disease Progression , Female , Humans , Inflammation/complications , Inflammation/metabolism , Inflammation/pathology , Obesity/complications , Obesity/metabolism , Tumor Microenvironment
15.
Curr Med Chem ; 28(11): 2114-2136, 2021.
Article En | MEDLINE | ID: mdl-33109033

The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.


Drug Repositioning , Neoplasms , Aged , Humans , Neoplasms/drug therapy
16.
Cancer Res ; 81(3): 685-697, 2021 02 01.
Article En | MEDLINE | ID: mdl-33268528

Checkpoint inhibitors (CI) instigate anticancer immunity in many neoplastic diseases, albeit only in a fraction of patients. The clinical success of cyclophosphamide (C)-based haploidentical stem-cell transplants indicates that this drug may re-orchestrate the immune system. Using models of triple-negative breast cancer (TNBC) with different intratumoral immune contexture, we demonstrate that a combinatorial therapy of intermittent C, CI, and vinorelbine activates antigen-presenting cells (APC), and abrogates local and metastatic tumor growth by a T-cell-related effect. Single-cell transcriptome analysis of >50,000 intratumoral immune cells after therapy treatment showed a gene signature suggestive of a change resulting from exposure to a mitogen, ligand, or antigen for which it is specific, as well as APC-to-T-cell adhesion. This transcriptional program also increased intratumoral Tcf1+ stem-like CD8+ T cells and altered the balance between terminally and progenitor-exhausted T cells favoring the latter. Overall, our data support the clinical investigation of this therapy in TNBC. SIGNIFICANCE: A combinatorial therapy in mouse models of breast cancer increases checkpoint inhibition by activating antigen-presenting cells, enhancing intratumoral Tcf1+ stem-like CD8+ T cells, and increasing progenitor exhausted CD8+ T cells.


Antineoplastic Agents/pharmacology , CD8-Positive T-Lymphocytes/drug effects , Cyclophosphamide/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Vinorelbine/pharmacology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Adhesion , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunity, Cellular , Mice , Mice, Inbred BALB C , Transcriptome , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology
17.
Int J Mol Sci ; 19(1)2018 Jan 17.
Article En | MEDLINE | ID: mdl-29342094

Telomeres are transcribed into noncoding telomeric repeat-containing RNAs (TERRA), which are essential for telomere maintenance. Deregulation of TERRA transcription impairs telomere metabolism and a role in tumorigenesis has been proposed. Head and neck cancer (HNC) is one of the most frequent cancers worldwide, with head and neck squamous cell carcinoma (HNSCC) being the predominant type. Since HNSCC patients are characterized by altered telomere maintenance, a dysfunction in telomere transcription can be hypothesized. In this prospective study, we compared TERRA levels in the tumor and matched normal tissue from 23 HNSCC patients. We then classified patients in two categories according to the level of TERRA expression in the tumor compared to the normal tissue: (1) lower expression in the tumor, (2) higher or similar expression in tumor. A significant proportion of patients in the first group died of the disease within less than 34 months postsurgery, while the majority of patients in the second group were alive and disease-free. Our results highlight a striking correlation between TERRA expression and tumor aggressiveness in HNSCC suggesting that TERRA levels may be proposed as a novel molecular prognostic marker for HNSCC.


Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/mortality , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , RNA, Long Noncoding/genetics , Telomere/genetics , Aged , Carcinoma, Squamous Cell/pathology , Female , Head and Neck Neoplasms/pathology , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Patient Outcome Assessment , Prognosis , Prospective Studies , Squamous Cell Carcinoma of Head and Neck , Telomere Homeostasis
18.
Nat Commun ; 8(1): 593, 2017 09 19.
Article En | MEDLINE | ID: mdl-28928446

Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth.


B7 Antigens/immunology , Lymphocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Prostaglandin D2/immunology , A549 Cells , Animals , Antineoplastic Agents/therapeutic use , B7 Antigens/metabolism , Cell Line, Tumor , Disease Models, Animal , HL-60 Cells , Hep G2 Cells , Humans , Immunity, Innate/immunology , Interleukin-13/immunology , Interleukin-13/metabolism , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/metabolism , Lymphocytes/metabolism , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/metabolism , Natural Cytotoxicity Triggering Receptor 3/metabolism , Prostaglandin D2/metabolism , Protein Binding , Tretinoin/therapeutic use
...