Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135073, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968826

RESUMEN

This study conducted a comprehensive analysis of trace element concentrations in the Upper Indus River Basin (UIRB), a glacier-fed region in the Western Himalayas (WH), aiming to discern their environmental and anthropogenic sources and implications. Despite limited prior data, 69 samples were collected in 2019 from diverse sources within the UIRB, including mainstream, tributaries, and groundwater, to assess trace element concentrations. Enrichment factor (EF) results and comparisons with regional and global averages suggest that rising levels of Zn, Cd, and As may pose safety concerns for drinking water quality. Advanced multivariate statistical techniques such as principal component analysis (PCA), absolute principal component scores (APCS-MLR), Monte Carlo simulation (MCS), etc were applied to estimate the associated human health hazards and also identified key sources of trace elements. The 95th percentile of the MCS results indicates that the estimated total cancer risk for children is significantly greater than (>1000 times) the USEPA's acceptable risk threshold of 1.0 × 10-6. The results classified most of the trace elements into two distinct groups: Group A (Li, Rb, Sr, U, Cs, V, Ni, TI, Sb, Mo, Ge), linked to geogenic sources, showed lower concentrations in the lower-middle river reaches, including tributaries and downstream regions. Group B (Pb, Nb, Cr, Zn, Be, Al, Th, Ga, Cu, Co), influenced by both geogenic and anthropogenic activities, exhibited higher concentrations near urban centers and midstream areas, aligning with increased municipal waste and agricultural activities. Furthermore, APCS-MLR source apportionment indicated that trace elements originated from natural geogenic processes, including rock-water interactions and mineral dissolution, as well as anthropogenic activities. These findings underscore the need for targeted measures to mitigate anthropogenic impacts and safeguard water resources for communities along the IRB and WH.

2.
Sci Total Environ ; 854: 158733, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108832

RESUMEN

Complex transformations of heavy metals in the mega-river-estuary continuum limit our understanding of their pollution history. This study investigated sedimentary compositions of heavy metals, major elements, total organic carbon, grain size, and radionuclides to study spatiotemporal variations in heavy metal accumulation patterns and their controlling mechanisms in four sediment cores (E1-E4) from the Yangtze River Estuary (YRE). Results show that only E3 in the distal YRE front mirrors well the heavy metal pollution history due to its continuous deposition in a stable sedimentary environment, while E1 and E2 record the influence of riverine and estuarine projects and processes apparently. E1 in the proximal YRE front registers intense human disturbance through sediment dredging and dumping activities to produce a thick layer of abnormal low 210Pbex and minor heavy metal concentrations. E2 in the intermediate YRE front demonstrates the recently increasing influence of reduced sediment discharge by its upcore coarsening trend with decreased heavy metal concentrations. Flood and storm events left different imprints in core sediments of E2 and E3 by their coarse stratal units with fewer heavy metal concentrations. The source analysis indicates that heavy metals in estuarine sediments mainly come from natural processes but are significantly affected by human activities. A direct linkage of the heavy metal accumulation history with the socioeconomic development in recent decades is found by a comparison study of core data from the tidal river to the estuary, albeit with a remarkable spatiotemporal difference, which is jointly determined by grain size, offshore distance, hydrodynamic condition, depositional status, and sedimentation rate besides estuarine processes. This warns us to carefully interpret the heavy metal history from single or sparse core data in a mega estuary system with intense natural forces and human disturbances analogous to the YRE.

3.
Sci Total Environ ; 859(Pt 1): 160189, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36395834

RESUMEN

Under the continuous warming trend in the 21st century, mangroves are likely to migrate into more temperate regions in North and South America. However, the biogeography of different mangrove species is still unclear, especially near their latitudinal range limits in the two continents. This study utilizes palynological, geochemical, and sedimentological analyses to record changes in the coastal morphology and vegetation during the Holocene in Cedar Keys, Florida, the mangrove sub-range limit in North America. The multi-proxy dataset indicates that the milder winters during the Medieval Climate Anomaly likely facilitated the establishment of mangroves in the study region, where Avicennia, Laguncularia, and Rhizophora were established in the ~12th (790-850 cal yr BP), ~14th (580-660 cal yr BP), and ~ 16th century (440-460 cal yr BP), respectively. Thus, the Medieval Climate Anomaly likely triggered the poleward mangrove migration in North and South America synchronously. Moreover, the multi-proxy dataset also documents the obliteration of the Woodland Culture near Cedar Keys, where a once-thriving native civilization on Seahorse Key was driven out by the European colonizers, who settled on the mainland and Atsena Otie Key. Over time, the relict sites of the Woodland people on Seahorse Key were covered by mangroves and marsh vegetation since the ~16th century. Overall, our dataset suggests that industrial-era warming may have intensified the poleward mangrove expansion, although this trend had started earlier during the Medieval Climate Anomaly.


Asunto(s)
Avicennia , Rhizophoraceae , Humanos , Cambio Climático , Humedales , Actividades Humanas , Ecosistema
4.
Sci Total Environ ; 759: 143531, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33243497

RESUMEN

The complexity of dissolved organic matter (DOM) limits our understanding of the estuarine carbon cycle. This study adopted a combination of bulk carbon isotope, optical techniques and ultra-high resolution mass spectrometry to study the spatial heterogeneity and compositional variations of DOM across a latitudinal transect of the Yangtze River Estuary (YRE). Results show that the whole section of YRE received high abundance of protein-like C4 fluorescent component (0.66 ± 0.08 R.U.) and high relative abundance of aliphatic compounds and peptides (8.28 ± 1.46%) from phytoplankton, which would contribute to the bioavailable DOM pool of the Eastern China Sea (ECS). However, multivariate analysis indicated that polycyclic aromatics and polyphenols from the Yangtze River experienced a significant decrease of 5% within the turbidity zone, creating a significant decrease of 0.08 in aromaticity index and modulating DOM content and compositions within the YRE. 1837 molecular formulae were identified to track dynamic behaviors of terrestrial DOM in the YRE. Molecular imprints showed the removal of terrestrial molecules in the turbidity zone indicated by the decrease of 753 in molecular quantity, when water masses mixing diluted the abundance of aromatic compounds. Adsorption and flocculation could serve important mechanisms to remove terrestrial DOM, promoting the burial of terrestrial DOM within estuarine sediments. Besides, some terrestrial molecular formulae were also detected in the ECS, suggesting the potential contribution of terrestrial DOM to the carbon stock of open seas after experiencing physical and photochemical transformations. This research provides a comprehensive insight into spatial variations of estuarine DOM composition, underlining the important role of estuaries in sorting and transporting DOM.

5.
Mar Environ Res ; 69(3): 187-97, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20022628

RESUMEN

Twenty-eight surface water samples from rivers, muddy intertidal flats, sand shores, and bedrock coasts were collected along the Zhejiang coastline in southeast China. In addition, three samples from the Changjiang (Yangtze River) were collected for comparison. CDOM (chromophoric dissolved organic matter) absorption and fluorescence excitation-emission matrix (EEM) spectroscopy, as well as nutrients and DOC were measured in these samples. According to salinity, nutrient, and DOC constituents, the 28 Zhejiang samples were categorized into four groups, i.e. highly-polluted, river derived, muddy-flat derived, and saltwater dominated ones. Among the six parameters (two humic-like and two protein-like peak intensities in fluorescence EEM contours, absorption at 300 nm, and DOC concentration) for the Zhejiang samples, any two of them were positively correlated. The submarine groundwater discharge, rather than local rivers, might have provided most of the freshwater that interacted with the saltwater during the mixing process. The high protein-like EEM peaks in samples from muddy salt marshes and rivers were probably caused by terrestrial inputs, land-based pollution, and local biological activities in combination.


Asunto(s)
Agua Dulce/análisis , Sustancias Húmicas/análisis , Agua de Mar/análisis , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente , Proteínas/análisis , Espectrometría de Fluorescencia , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA