Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biomark Res ; 12(1): 58, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840205

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous malignancy characterized by varied responses to treatment and prognoses. Understanding the metabolic characteristics driving DLBCL progression is crucial for developing personalized therapies. METHODS: This study utilized multiple omics technologies including single-cell transcriptomics (n = 5), bulk transcriptomics (n = 966), spatial transcriptomics (n = 10), immunohistochemistry (n = 34), multiple immunofluorescence (n = 20) and to elucidate the metabolic features of highly malignant DLBCL cells and tumor-associated macrophages (TAMs), along with their associated tumor microenvironment. Metabolic pathway analysis facilitated by scMetabolism, and integrated analysis via hdWGCNA, identified glycolysis genes correlating with malignancy, and the prognostic value of glycolysis genes (STMN1, ENO1, PKM, and CDK1) and TAMs were verified. RESULTS: High-glycolysis malignant DLBCL tissues exhibited an immunosuppressive microenvironment characterized by abundant IFN_TAMs (CD68+CXCL10+PD-L1+) and diminished CD8+ T cell infiltration. Glycolysis genes were positively correlated with malignancy degree. IFN_TAMs exhibited high glycolysis activity and closely communicating with high-malignancy DLBCL cells identified within datasets. The glycolysis score, evaluated by seven genes, emerged as an independent prognostic factor (HR = 1.796, 95% CI: 1.077-2.995, p = 0.025 and HR = 2.631, 95% CI: 1.207-5.735, p = 0.015) along with IFN_TAMs were positively correlated with poor survival (p < 0.05) in DLBCL. Immunohistochemical validation of glycolysis markers (STMN1, ENO1, PKM, and CDK1) and multiple immunofluorescence validation of IFN_TAMs underscored their prognostic value (p < 0.05) in DLBCL. CONCLUSIONS: This study underscores the significance of glycolysis in tumor progression and modulation of the immune microenvironment. The identified glycolysis genes and IFN_TAMs represent potential prognostic markers and therapeutic targets in DLBCL.

2.
Mol Cell Proteomics ; 23(5): 100749, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513890

RESUMEN

Chemoimmunotherapy has evolved as a standard treatment for advanced non-small cell lung cancer (aNSCLC). However, inevitable drug resistance has limited its efficacy, highlighting the urgent need for biomarkers of chemoimmunotherapy. A three-phase strategy to discover, verify, and validate longitudinal predictive autoantibodies (AAbs) for aNSCLC before and after chemoimmunotherapy was employed. A total of 528 plasma samples from 267 aNSCLC patients before and after anti-PD1 immunotherapy were collected, plus 30 independent formalin-fixed paraffin-embedded samples. Candidate AAbs were firstly selected using a HuProt high-density microarray containing 21,000 proteins in the discovery phase, followed by validation using an aNSCLC-focused microarray. Longitudinal predictive AAbs were chosen for ELISA based on responders versus non-responders comparison and progression-free survival (PFS) survival analysis. Prognostic markers were also validated using immunohistochemistry and publicly available immunotherapy datasets. We identified and validated a panel of two AAbs (MAX and DHX29) as pre-treatment biomarkers and another panel of two AAbs (MAX and TAPBP) as on-treatment predictive markers in aNSCLC patients undergoing chemoimmunotherapy. All three AAbs exhibited a positive correlation with early responses and PFS (p < 0.05). The kinetics of MAX AAb showed an increasing trend in responders (p < 0.05) and a tendency to initially increase and then decrease in non-responders (p < 0.05). Importantly, MAX protein and mRNA levels effectively discriminated PFS (p < 0.05) in aNSCLC patients treated with immunotherapy. Our results present a longitudinal analysis of changes in prognostic AAbs in aNSCLC patients undergoing chemoimmunotherapy.


Asunto(s)
Autoanticuerpos , Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Femenino , Masculino , Autoanticuerpos/sangre , Persona de Mediana Edad , Anciano , Pronóstico , Biomarcadores de Tumor , Adulto
3.
NPJ Precis Oncol ; 8(1): 75, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521868

RESUMEN

In hepatocellular carcinoma (HCC), classical cancer stem cells (CSC) markers were shared by normal stem cells, targeting which may hinder hepatic regeneration and cause liver failure. Additionally, the spatial structure of CSC still remained elusive. To address these limitations, we undertook a comprehensive study combining single-cell data (56,022 cells from 20 samples) and spatial data (38,191 spots from eight samples) to obtain CSC signature and uncover its spatial structure. Utilizing the CytoTRACE algorithm, we discretely identified CSC, which displayed upregulated proliferation pathways regulated by HIF1A. A CSC signature of 107 genes was then developed using Weighted Gene Co-expression Network Analysis (WGCNA). Notably, HCC patients with high CSC levels exhibited an accumulation of SPP1+ macrophages (Macro_SPP1) expressing metalloproteinases (MMP9, MMP12, and MMP7) regulated by HIF1A, suggesting a hypoxic tumor region connecting Macro_SPP1 and CSC. Both CSC and Macro_SPP1 correlated with worse prognosis and undesirable immunotherapy response. Spatial analysis revealed the co-location of CSC and Macro_SPP1, with CD8 T cells excluded from the tumor region. The co-location area and non-tumor area of boundary exhibited a high level of hypoxia, with the HAVRC2 checkpoint highly expressed. Within the co-location area, the SPP1 signaling pathway was most active in cell-cell communication, with SPP1-CD44 and SPP1-ITGA/ITGB identified as the main ligand-receptor pairs. This study successfully constructed a CSC signature and demonstrated the co-location of CSC and Macro_SPP1 in a hypoxic region that exacerbates the tumor microenvironment in HCC.

4.
Math Biosci Eng ; 21(3): 3860-3875, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38549311

RESUMEN

Traditional unsupervised speech enhancement models often have problems such as non-aggregation of input feature information, which will introduce additional noise during training, thereby reducing the quality of the speech signal. In order to solve the above problems, this paper analyzed the impact of problems such as non-aggregation of input speech feature information on its performance. Moreover, this article introduced a temporal convolutional neural network and proposed a SASEGAN-TCN speech enhancement model, which captured local features information and aggregated global feature information to improve model effect and training stability. The simulation experiment results showed that the model can achieve 2.1636 and 92.78% in perceptual evaluation of speech quality (PESQ) score and short-time objective intelligibility (STOI) on the Valentini dataset, and can accordingly reach 1.8077 and 83.54% on the THCHS30 dataset. In addition, this article used the enhanced speech data for the acoustic model to verify the recognition accuracy. The speech recognition error rate was reduced by 17.4%, which was a significant improvement compared to the baseline model experimental results.

5.
Lung Cancer ; 189: 107503, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38359741

RESUMEN

BACKGROUND: Anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs) has demonstrated remarkable therapeutic effects in ALK-positive non-small cell lung cancer (NSCLC) patients. Identifying prognostic biomarkers can enhance the clinical efficacy of relapsed or refractory patients. METHODS: We profiled 737 plasma proteins from 159 pre-treatment and on-treatment plasma samples of 63 ALK-positive NSCLC patients using data-independent acquisition-mass spectrometry (DIA-MS). The consensus clustering algorithm was used to identify subtypes with distinct biological features. A plasma-based prognostic model was constructed using the LASSO-Cox method. We performed the Mfuzz analysis to classify the patterns of longitudinal changes in plasma proteins during treatment. 52 baseline plasma samples from another independent ALK-TKI treatment cohort were collected to validate the potential prognostic markers using ELISA. RESULTS: We identified three subtypes of ALK-positive NSCLC with distinct biological features and clinical efficacy. Patients in subgroup 1 exhibited activated humoral immunity and inflammatory responses, increased expression of positive acute-phase response proteins, and the worst prognosis. Then we constructed and verified a prognostic model that predicts the efficacy of ALK-TKI therapy using the expression levels of five plasma proteins (SERPINA4, ATRN, APOA4, TF, and MYOC) at baseline. Next, we explored the longitudinal changes in plasma protein expression during treatment and identified four distinct change patterns (Clusters 1-4). The longitudinal changes of acute-phase proteins during treatment can reflect the treatment status and tumor progression of patients. Finally, we validated the prognostic efficacy of baseline plasma CRP, SAA1, AHSG, SERPINA4, and TF in another independent NSCLC cohort undergoing ALK-TKI treatment. CONCLUSIONS: This study contributes to the search for prognostic and drug-resistance biomarkers in plasma samples for ALK-TKI therapy and provides new insights into the mechanism of drug resistance and the selection of follow-up treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa de Linfoma Anaplásico/genética , Proteómica , Proteínas Sanguíneas , Biomarcadores , Proteínas de Fusión Oncogénica
6.
Cancer ; 130(8): 1257-1269, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38133926

RESUMEN

BACKGROUND: R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) is a standard first-line treatment for diffuse large B-cell lymphoma (DLBCL). However, 20%-40% of patients survive less than 5 years. Novel prognostic biomarkers remain in demand. METHODS: Baseline plasma autoantibodies (AAbs) were assessed in 336 DLBCLs. In the discovery phase (n = 20), a high-density antigen microarray (∼21,000 proteins) was used to expound AAb profiles. In the verification phase (n = 181), with a DLBCL-focused microarray, comparative results based on event-free survival at 24 months (EFS24) and lasso Cox regression models of progression-free survival (PFS) and overall survival (OS) were integrated to identify potential biomarkers. They were further validated by enzyme-linked immunosorbent assay in validation phase 1 (n = 135) and a dynamic cohort (n = 12). In validation phase 2, a two-AAb-based risk score was established. They were further validated in an immunohistochemistry cohort (n = 55) and four independent Gene Expression Omnibus datasets (n = 1598). RESULTS: Four AAbs (CREB1, N4BP1, UBAP2, and DEAF1) were identified that showed associations with EFS24 status (p < .05) and superior PFS and OS (p < .05). A novel risk score model based on CREB1 and N4BP1 AAbs was developed to predict PFS with areas under the curve of 0.72, 0.71, 0.76, and 0.82 at 1, 3, 5, and 7 years, respectively, in DLBCL treated with R-CHOP independent of the International Prognostic Index (IPI) and provided significant additional recurrence risk discrimination (p < .05) for the IPI. CREB1 and N4BP1 proteins and messenger RNAs were also associated with better PFS and OS (p < .05). CONCLUSIONS: This study identified a novel prognostic panel of CREB1, N4BP1, DEAF1, and UBAP2 AAbs that is independent of the IPI in DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Pronóstico , Rituximab/uso terapéutico , Vincristina/uso terapéutico , Prednisona/uso terapéutico , Anticuerpos Monoclonales de Origen Murino/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Ciclofosfamida/uso terapéutico , Doxorrubicina/uso terapéutico , Biomarcadores , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de Unión al ADN , Factores de Transcripción
7.
iScience ; 26(10): 107894, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766998

RESUMEN

Senescent tumor cells (STCs) can induce immunosuppression, promoting tumor progression and therapy resistance. However, the specific characteristics of immunosuppressive STC have not been thoroughly investigated. This study aimed to characterize and elucidate the immunosuppressive phenotype of STC in lung adenocarcinoma by employing single-cell and bulk transcriptomics, as well as serum proteomics profiling. We identified senescence-related genes specific to tumors and identified Cluster10 of STC as the immunomodulatory subtype. Cluster10 exhibited a distinct secretome dominated by cytokines such as CXCL1, CXCL2, and CXCL8 and showed activation of transcription factors associated with cytokine secretion, including NFKB1, RELA, and STAT3. Notably, Cluster10 demonstrated the highest degree of intercellular communication among all cell types, with interactions as LGALS9-TIM3 and MIF-CD74. Furthermore, Cluster10 showed significant associations with poor prognosis and diminished response to immunotherapy. Analysis of serum proteomics data from our in-house cohort identified CXCL8 as a potential marker for predicting immunotherapeutic outcomes.

8.
Cancer Immunol Immunother ; 72(7): 2423-2442, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010552

RESUMEN

An emerging view regarding cancer-associated fibroblast (CAF) is that it plays a critical role in tumorigenesis and immunosuppression in the tumor microenvironment (TME), but the clinical significance and biological functions of CAFs in non-small cell lung cancer (NSCLC) are still poorly explored. Here, we aimed to identify the CAF-related signature for NSCLC through integrative analyses of bulk and single-cell genomics, transcriptomics, and proteomics profiling. Using CAF marker genes identified in weighted gene co-expression network analysis (WGCNA), we constructed and validated a CAF-based risk model that stratifies patients into two prognostic groups from four independent NSCLC cohorts. The high-score group exhibits a higher abundance of CAFs, decreased immune cell infiltration, increased epithelial-mesenchymal transition (EMT), activated transforming growth factor beta (TGFß) signaling, and a limited survival rate compared with the low-score group. Considering the immunosuppressive feature in the high-score group, we speculated an inferior clinical response for immunotherapy in these patients, and this association was successfully verified in two NSCLC cohorts treated with immune checkpoint blockades (ICBs). Furthermore, single-cell RNA sequence datasets were used to clarify the molecular mechanisms underlying the aggressive and immunosuppressive phenotype in the high-score group. We found that one of the genes in the risk model, filamin binding LIM protein 1 (FBLIM1), is mainly expressed in fibroblasts and upregulated in CAFs compared to fibroblasts from normal tissue. FBLIM1-positive CAF subtype was correlated with increased TGFß expression, higher mesenchymal marker level, and immunosuppressive tumor microenvironment. Finally, we demonstrated that FBLIM1 might serve as a poor prognostic marker for immunotherapy in clinical samples. In conclusion, we identified a novel CAF-based classifier with prognostic value in NSCLC patients and those treated with ICBs. Single-cell transcriptome profiling uncovered FBLIM1-positive CAFs as an aggressive subtype with a high abundance of TGFß, EMT, and an immunosuppressive phenotype in NSCLC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Fibroblastos Asociados al Cáncer/patología , Neoplasias Pulmonares/patología , Pronóstico , Análisis de Expresión Génica de una Sola Célula , Factor de Crecimiento Transformador beta/metabolismo , Inmunoterapia , Microambiente Tumoral/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Moléculas de Adhesión Celular/genética
9.
Front Plant Sci ; 14: 1308584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38293619

RESUMEN

Introduction: Nicosulfuron is the leading acetolactate synthase inhibitor herbicide product, and widely used to control gramineous weeds. Here, we investigated the metabolic process of nicosulfuron into foxtail millet and maize, in order to clarify the mechanism of the difference in sensitivity of foxtail millet and maize to nicosulfuron from the perspective of physiological metabolism and provide a theoretical basis for the breeding of nicosulfuron-resistant foxtail millet varieties. Methods: We treated foxtail millet (Zhangzagu 10, Jingu 21) and maize (Nongda 108, Ditian 8) with various doses of nicosulfuron in both pot and field experiments. The malonaldehyde (MDA) content, target enzymes, detoxification enzymes, and antioxidant enzymes, as well as related gene expression levels in the leaf tissues of foxtail millet and maize were measured, and the yield was determined after maturity. Results: The results showed that the recommended dose of nicosulfuron caused Zhangzagu 10 and Jingu 21 to fail to harvest; the yield of the sensitive maize variety (Ditian 8) decreased by 37.09%, whereas that of the resistant maize variety (Nongda 108) did not decrease. Nicosulfuron stress increased the CYP450 enzyme activity, MDA content, and antioxidant enzyme activity of foxtail millet and maize, reduced the acetolactate synthase (ALS) activity and ALS gene expression of foxtail millet and Ditian 8, and reduced the glutathione S-transferase (GST) activity and GST gene expression of foxtail millet. In conclusion, target enzymes, detoxification enzymes, and antioxidant enzymes were involved in the detoxification metabolism of nicosulfuron in plants. ALS and GST are the main factors responsible for the metabolic differences among foxtail millet, sensitive maize varieties, and resistant maize varieties. Discussion: These findings offer valuable insights for exploring the target resistance (TSR) and non-target resistance (NTSR) mechanisms in foxtail millet under herbicide stress and provides theoretical basis for future research of develop foxtail millet germplasm with diverse herbicide resistance traits.

10.
Sci Adv ; 8(51): eadd7482, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563146

RESUMEN

The concept of critical ionization fraction has been essential for high-harmonic generation, because it dictates the maximum driving laser intensity while preserving the phase matching of harmonics. In this work, we reveal a second, nonadiabatic critical ionization fraction, which substantially extends the phase-matched harmonic energy, arising because of the strong reshaping of the intense laser field in a gas plasma. We validate this understanding through a systematic comparison between experiment and theory for a wide range of laser conditions. In particular, the properties of the high-harmonic spectrum versus the laser intensity undergoes three distinctive scenarios: (i) coincidence with the single-atom cutoff, (ii) strong spectral extension, and (iii) spectral energy saturation. We present an analytical model that predicts the spectral extension and reveals the increasing importance of the nonadiabatic effects for mid-infrared lasers. These findings are important for the development of high-brightness soft x-ray sources for applications in spectroscopy and imaging.

11.
Front Plant Sci ; 13: 1008198, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212350

RESUMEN

Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food security in semiarid and arid regions due to its high tolerance to abiotic and biotic stresses and its good performance in marginal lands with relatively low fertility. To deeply understand the interrelationship among sorghum genotype, environment, sowing dates, and densities in the spring sowing early maturing (SSEM) areas of China, and to provide a basis for specifying scientific and reasonable cultural practices, a two-year field experiment was conducted with six popular varieties at six locations. Combined ANOVA showed that the yield difference between years was significant (P<0.05); the yield differences among locations, varieties, sowing dates, and densities were all highly significant (P<0.01). The variety effect was mainly influenced by location, year, sowing dates and their interactions. The sowing effect was mainly influenced by the location, year, variety and their interactions The plant density effect was significantly influenced by location and location-year interaction. Of the contributions of various test factors to yield variance, the location was the largest one (38.18%), followed by variety (12.31%), sowing date (1.53%), density (0.54%), and year (0.09%), with all these single factors accounting for 52.65%. The total contribution of all two-factor interactions accounted for 14.24%, among which the greatest contributor was location-hybrid interaction (8.07%). The total contribution of all three-factor interactions accounted for 14.58%, of which year-location-hybrid interaction was the largest contributor (9.02%). Sowing dates significantly affected model of sorghum growth and development, especially during the late period. The key climatic factors affecting yield were different among the six locations. Weather factors during the grain filling stages contributed much more than those during the early stage to grain yield. Mid-maturing varieties are recommended other than early maturing varieties for the SSEM areas even when late sowing occurs. Sowing as early as possible is recommended for areas with very short frost-free period (Harbin, Tongliao, and Datong). Proper delayed sowing is recommended for areas with a relative long frost-free period (Gongzhuling, Baicheng and Zhangjiakou). This research will provide a conducive reference for sorghum production in similar areas.

12.
Inorg Chem ; 61(35): 14148-14155, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35998664

RESUMEN

The assembly of a tetradentate pyridine-derived ligand with CuX has afforded two isostructural Cu(I)-organic frameworks [Cu2X2(TBD)·DMF]n (X = Cl for 1 and Br for 2) in this work. Structural analysis indicates that the compounds feature hybrid layered architectures, and the three-dimensional supramolecular frameworks are finally fabricated through the alternative stacking of adjacent layers wherein large open channels are simultaneously constructed. The chemical stability has been studied showing the excellent skeleton maintenance of the prepared solids in various solvents and even in water. Moreover, the iodine and dye sorption performance for compound 1 has been further tested. The Cu(I)-based metal-organic framework exhibits outstanding sorption and separation abilities on the targeted species, which could be considered as a promising adsorbent with high efficiency and selectivity.

13.
Opt Express ; 30(2): 2918-2932, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209423

RESUMEN

The high power and variable repetition-rate of Yb femtosecond lasers makes them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ∼9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in spatial soliton modes, and by confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ∼0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. Our predictive method offers a compact and cost-effective solution for high-quality few-cycle-pulse generation from Yb femtosecond lasers, and will enable broad applications in ultrafast science and extreme nonlinear optics.

14.
J Pharm Biomed Anal ; 209: 114515, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34894461

RESUMEN

Toripalimab, a humanized IgG4 monoclonal antibody (mAb) against programmed death receptor-1, is being extensively studied to treat various malignancies. At present, there is no complete methodology reported for quantifying toripalimab, except for an electrochemiluminescence immunoassay (ECLIA) mentioned in several clinical studies. Therefore, a sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to accurately detect toripalimab levels, compared with the ECLIA. Plasma samples were pretreated by a five-step process, encompassing denaturation, reduction, alkylation, enzymatic hydrolysis and quenching. And a unique, sensitive and stable enzymatic peptide (ASGYTFTDYEMHWVR) selected as surrogate of toripalimab was eluted and monitored by UPLC-MS/MS system with the linear range of 5.0375-201.5 µg/mL. After fully validated, the UPLC-MS/MS method was applied to determine 77 plasma samples from 29 patients in a phase I clinical trial, and compared with ECLIA based on 56 samples. Wilcoxon paired samples test showed toripalimab levels by UPLC-MS/MS were significantly higher than that by ECLIA (p < 0.001), though a strong correlation was observed (r = 0.96). Moreover, Passing-Bablok regression analysis exhibited constant and proportional biases: UPLC-MS/MS = 2.25 + 1.21 * ECLIA. This discrepancy could be mainly attributed to different forms determined: total mAb for UPLC-MS/MS and free mAb for ECLIA, respectively. As a result, this UPLC-MS/MS method may be complementary to ECLIA to monitor different forms of toripalimab. Beyond that, it can be easily modified to simultaneously quantitate multiple-analyte with a small volume of plasma.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Anticuerpos Monoclonales Humanizados , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Humanos , Inmunoensayo
15.
Epigenomics ; 14(22): 1427-1448, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36683462

RESUMEN

Aim: To find biomarkers for immunity and immunotherapy in lung adenocarcinoma (LUAD) through multiomics analysis. Materials & methods: The multiomics data of patients with LUAD were downloaded from the TCGA and GEO databases. CIBERSORT, quanTIseq, ESTIMATEScore, k-means clustering, gene set enrichment analysis, gene set variation analysis, immunophenoscore and logistic regression were used in this study. Results: PSMB8 HypoMet-HighExp group patients have more active immune-related pathways, more antitumor immune cells, less protumor immune cells, higher immunophenoscore and longer progression-free survival of immune checkpoint inhibitor therapy than HyperMet-LowExp group. In multivariate analysis, PSMB8 showed an independent value. Conclusion: The combination of DNA methylation and mRNA expression of PSMB8 could independently distinguish types of tumor immune microenvironment and predict programmed cell death protein 1/programmed cell death-ligand 1 inhibitors' effects in patients with LUAD.


Our research provides a new and robust method to select biomarkers based on the tumor immune microenvironment. Our research finds that a new epigenomic and transcriptomic biomarker could independently distinguish the types of tumor immune microenvironment and predict immunotherapy effects in patients with lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Metilación de ADN , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Pronóstico , Procesamiento Proteico-Postraduccional , Microambiente Tumoral
16.
Front Plant Sci ; 13: 1035906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36704173

RESUMEN

As a bridge between genome and phenotype, metabolome is closely related to plant growth and development. However, the research on the combination of genome, metabolome and multiple agronomic traits in foxtail millet (Setaria italica) is insufficient. Here, based on the linkage analysis of 3,452 metabolites via with high-quality genetic linkage maps, we detected a total of 1,049 metabolic quantitative trait loci (mQTLs) distributed in 11 hotspots, and 28 metabolite-related candidate genes were mined from 14 mQTLs. In addition, 136 single-environment phenotypic QTL (pQTLs) related to 63 phenotypes were identified by linkage analysis, and there were 12 hotspots on these pQTLs. We futher dissected 39 candidate genes related to agronomic traits through metabolite-phenotype correlation and gene function analysis, including Sd1 semidwarf gene, which can affect plant height by regulating GA synthesis. Combined correlation network and QTL analysis, we found that flavonoid-lignin pathway maybe closely related to plant architecture and yield in foxtail millet. For example, the correlation coefficient between apigenin 7-rutinoside and stem diameter reached 0.98, and they were co-located at 41.33-44.15 Mb of chromosome 5, further gene function analysis revealed that 5 flavonoid pathway genes, as well as Sd1, were located in this interval . Therefore, the correlation and co-localization between flavonoid-lignins and plant architecture may be due to the close linkage of their regulatory genes in millet. Besides, we also found that a combination of genomic and metabolomic for BLUP analysis can better predict plant agronomic traits than genomic or metabolomic data, independently. In conclusion, the combined analysis of mQTL and pQTL in millet have linked genetic, metabolic and agronomic traits, and is of great significance for metabolite-related molecular assisted breeding.

17.
Front Plant Sci ; 12: 665530, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386024

RESUMEN

The plant metabolome is considered as a bridge between the genome and the phenome and is essential for the interaction between plant growth and the plant environment. Here, we used the liquid chromatography-tandem mass spectrometry method to perform a widely targeted metabolomics analysis of 150 millet germplasm and simultaneous identification and quantification of 330 annotated metabolites. Comparing the metabolic content of different millets revealed significant natural variation of both primary and secondary metabolites, including flavonoids, phenolamides, hydroxycinnamoyl derivatives, nucleotides, and lipids, in the millets from India and the north and south of China; among them, some of the flavonoids are the most prominent. A total of 2.2 TB sequence data were obtained by sequencing 150 accessions of foxtail millet using the Illumina platform. Further digging into the genetic basis of metabolites by mGWAS analysis found that cyanidin 3-O-glucoside and quercetin O-acetylhexside are concentratedly located at 43.55 Mb on chromosome 5 and 26.9 Mb on chromosome 7, and two Lc were mined as candidate genes, respectively. However, the signals of luteolin 7-O-glucoside and kaempferol 3-O-glucoside were also detected at 14.36 Mb on chromosome 3, and five glycosyltransferase genes on this loci were deemed to regulate their content. Our work is the first research to use mGWAS in millet, and it paves the way for future dissection of complex physiological traits in millet.

18.
Light Sci Appl ; 10(1): 53, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692333

RESUMEN

Generating intense ultrashort pulses with high-quality spatial modes is crucial for ultrafast and strong-field science and can be achieved by nonlinear supercontinuum generation (SCG) and pulse compression. In this work, we propose that the generation of quasi-stationary solitons in periodic layered Kerr media can greatly enhance the nonlinear light-matter interaction and fundamentally improve the performance of SCG and pulse compression in condensed media. With both experimental and theoretical studies, we successfully identify these solitary modes and reveal their unified condition for stability. Space-time coupling is shown to strongly influence the stability of solitons, leading to variations in the spectral, spatial and temporal profiles of femtosecond pulses. Taking advantage of the unique characteristics of these solitary modes, we first demonstrate single-stage SCG and the compression of femtosecond pulses from 170 to 22 fs with an efficiency >85%. The high spatiotemporal quality of the compressed pulses is further confirmed by high-harmonic generation. We also provide evidence of efficient mode self-cleaning, which suggests rich spatiotemporal self-organization of the laser beams in a nonlinear resonator. This work offers a route towards highly efficient, simple, stable and highly flexible SCG and pulse compression solutions for state-of-the-art ytterbium laser technology.

19.
Mol Breed ; 41(12): 73, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37309520

RESUMEN

Photo-(thermo-) sensitive genic male-sterile line is the key component of two-line hybridization system in foxtail millet (Setaria italica), but the genetic basis of male sterility in most male-sterile lines is still unclear. In the present study, a large F2 population was developed derived from a cross between the photo-(thermo-) sensitive male-sterile line A2 and the fertile-line 1484-5. Thirty plants with extreme high and extreme low fertility were selected from the population to construct a sterile DNA pool and a fertile DNA pool, respectively. Sequencing both DNA pools and data analysis revealed that two QTLs conferred male-sterility, qSiMS6.1 with a major effect and qSiMS6.2 with a minor effect, on chromosome 6. Both QTLs exhibited complete dominance. The major QTL, qSiMS6.1, was delimited to a 186-kb interval between the markers SiM20 and SiM9 by the joint analysis of QTL-seq and QTL mapping with SSR and structure variation markers. Millet_GLEAN_10020454 in this region is the most likely candidate gene for qSiMS6.1 since it is predicted to encode a male-sterile 5 like protein. These results lay a solid foundation for qSiMS6.1 cloning and provided gene resources for breeding new male-sterile lines. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01269-2.

20.
Opt Express ; 28(2): 980-990, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121817

RESUMEN

A conventional hollow core fiber (HCF) scheme is implemented to investigate spectral broadening of Titanium:Sapphire (Ti-Sa) femtosecond laser pulses in saturated hydrocarbon molecules compared to unsaturated ones. While the saturated molecules exhibit a spectral broadening similar to noble gases, for the unsaturated ones with π bonds, broadening towards blue is restrained. Numerical simulations underpin that it is a combination of group velocity dispersion (GVD) and Raman scattering which limits the spectral broadening for the unsaturated molecules. Compression of low energy ∼40fs pulses to ∼8fs using saturated hydrocarbons is demonstrated, suggesting the feasibility of this media for high repetition rate laser pulse compression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...