Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 139: 377-388, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105063

RESUMEN

Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , China , Material Particulado/análisis , Estaciones del Año , Acetaldehído/análisis , Monitoreo del Ambiente , Aerosoles/análisis
2.
Environ Res ; 238(Pt 1): 117158, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37726031

RESUMEN

Volatile organic compounds (VOCs) undergo substantial photochemical losses during their transport from emission sources to receptor sites, resulting in serious implications for their source apportionment and ozone (O3) formation. Based on the continuous measurements of VOCs in suburban Jinan in August 2022, the effects of photochemical losses on VOC source contributions and O3 formation were evaluated in this study. The observed and initial concentrations of total VOCs (TVOC) were 12.0 ± 5.1 and 16.0 ± 7.4 ppbv, respectively. Throughout the observation period, alkenes had the most prominent photochemical losses (58.2%), followed by aromatic hydrocarbons (23.1%), accounting for 80.6% and 6.9% of the total losses, respectively. During high O3 episodes, the photochemical loss of VOCs was 6.9 times higher than that during the cleaning period. Alkene losses (exceeding 67.3%), specifically losses of isoprene, propylene, ethylene, and n-butene, dominated the total losses of VOCs during the O3 increase period. Eight sources of VOCs were identified by positive matrix factorization (PMF) based on the observed and initial concentration data (OC-PMF and IC-PMF, respectively). Concentrations of all emission sources in the OC-PMF were underestimated by 2.4%-57.1%. Moreover, the contribution of each emission source was over- or underestimated compared with that in case of the IC-PMF. The contributions of biogenic and motor vehicle exhaust emissions were underestimated by 5.3 and 2.8 percentage points, respectively, which was associated with substantial oxidation of the emitted high-reactive species. The contributions of coal/biomass burning and natural gas were overestimated by 2.4 and 3.9 percentage points, respectively, which were related to the emission of low-reactive species (acetylene, ethane, and propane). Based on our results, the photochemical losses of VOCs grossly affect their source apportionment and O3 formation. Thus, photochemical losses of VOCs must be thoroughly accounted to establish a precise scientific foundation for air-pollution control strategies.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Ozono/análisis , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/análisis , China , Emisiones de Vehículos/análisis , Monitoreo del Ambiente
3.
Huan Jing Ke Xue ; 44(8): 4220-4230, 2023 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-37694617

RESUMEN

The surface ozone (O3) spatiotemporal distribution, variations, and its causes in Ji'nan from 2015 to 2020 were revealed based on the air quality monitoring network data and satellite retrievals from the Ozone Monitoring Instrument (OMI). The results showed that the ozone concentration in Ji'nan gradually increased from 2015 to 2020. The annual 90th percentile of the daily maximum 8-h average (MDA8) O3(namely the annual evaluation value) and the MDA8 O3(April-September) increased by 4.8 µg·(m3·a)-1 and 3.8 µg·(m3·a)-1, respectively. The trend of the ozone levels in the high-concentration range increased faster than that in the low-concentration range. The MDA8 in June increased by 7.4 µg·(m3·a)-1, and the rate range of increases was 2.6-3.9 µg·(m3·a)-1 in the cool seasons (December-February); thus, the O3 control in winter cannot be ignored. It is apparent from the diurnal variations in ozone from 2015 to 2020 in April-September that the average ozone levels have risen in recent years. The growth rate in the daytime was higher than that at night. The capacity of photochemical production has been increasing, especially in recent years. Additionally, it is noteworthy that the peak time for ozone levels occurred approximately 1-2 h earlier. The disparity of ozone concentrations among different stations gradually decreased in recent years. Compared with that in 2015, the range of areas with high O3 concentrations in 2019-2020 was further expanded. The significant positive trends in MDA8-90th and MDA8 (April-September) were observed in 16.1% and 22.6% of the monitoring sites in Ji'nan (P<0.05), most of which were located in urban areas and the suburbs close to urban areas. The temporal and spatial changes in ozone in Jinan had been affected by the changes in VOCs and NOx emissions since 2015. Satellite remote sensing data from 2015 to 2020 revealed that the NO2 tropospheric columns (April-September) showed reductions of 20.6%, with a decreasing rate of 0.3×1015 mole·(cm2·a)-1, especially in the urban areas and suburbs. The detected variation trends of tropospheric HCHO were weak and insignificant, which suggested that the decrease in NOx emissions was much greater than the decrease in VOCs emissions, and the gap had become more obvious in the urban areas. With responses to precursor emissions, the chemical sensitivity of O3 formation had been changing. The VOCs-limited regimes continuously decreased, and the mixed NOx/VOCs-sensitive regimes and NOx-limited regimes increased. In general, such an extremely inappropriate control ratio of ozone precursor NOx/VOCs led to an overall trend of slow increasing fluctuations of O3 in Ji'nan. The findings clearly indicate that the reduction of VOCs in Ji'nan was far from sufficient, and strengthening the current control of VOCs emissions is an effective measure to control the growth trend of O3 pollution in Ji'nan in the near future, especially in urban and surrounding suburban areas.

4.
Sci Total Environ ; 858(Pt 3): 159951, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336034

RESUMEN

Volatile organic compounds (VOCs) management has been recently given a high priority in China to mitigate ozone (O3) air pollution. However, there is a relatively poor understanding of VOCs due to their complexity and fewer observations. To better understand the pollution characteristics of VOCs and their impact on O3 pollution, two-year continuous measurements were conducted at four representative sites in Ji'nan, eastern China. These four sites cover urban, background, and industrial areas (within a petroleum refinery). Ambient VOCs showed higher concentrations at industrial site than at urban and background sites, owing to intensive emissions from petrochemical industry. The VOCs compositions present spatial heterogeneity with alkenes dominated in total reactivity at urban and background sites, while alkenes and aromatics together dominated at industrial site. The VOCs emission profile from petrochemical industry was calculated based on observational data, which revealed a huge impact on light alkanes (C2-C5), light alkenes (ethene), and aromatics (toluene and m/p-xylene). The positive matrix factorization (PMF) model analysis further refined the impact of different petrochemical industrial processes. Alkanes and alkenes dominated the emissions during refining process, while aromatics dominated during solvent usage process. Analysis by an observation-based model indicated stronger in-situ O3 production and higher sensitivity to nitrogen oxides at industrial site compared to urban and background sites. The reduction of VOCs emissions from petrochemical industry would significantly reduce the O3 concentrations. The analyses underline the significant impact of petrochemical industry on VOCs and O3 pollution, and provide important reference for the formulation of refined and effective control strategies.


Asunto(s)
Ciudades , Monitoreo del Ambiente , Compuestos Orgánicos Volátiles , China
5.
Huan Jing Ke Xue ; 43(2): 686-695, 2022 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-35075842

RESUMEN

In the summer of 2019, field measurements of ozone (O3) and its precursors[volatile organic compounds (VOCs) and nitrogen oxides (NOx)] were carried out at an urban site in Ji'nan. We found that the daily maximum 8-hour averages φ(O3) were (103.0±14.5)×10-9. The average φ(NOx) and φ(VOCs), which are ozone precursors, were (16.7±11.3)×10-9and (22.4±9.4)×10-9, respectively. The ·OH reactivity of VOCs was determined (9.6±3.8) s-1. Ji'nan suffered from serious O3 pollution. An observation-constrained chemical box model was deployed to evaluate in situ photochemical O3 production, which indicated that chemical reactions made positive contributions to O3 production rates between 07:00 and 19:00 LT, with the average hourly O3 production rate of 35.6×10-9 h-1. To evaluate the effectiveness of various ozone precursor control strategies in reducing ozone pollution, we combined the observation-based model (OBM) with the relative incremental reactivity (RIR) method. The key indicators that affect the local ozone production rate were identified. Ji'nan was under VOC-limited conditions and the key VOC precursors were alkenes. The O3 formation mechanism changed from the VOC-limited regime in the morning to the transitional regime in the afternoon. Correspondingly, the simulated local O3 production rate was increased from 18.3×10-9 h-1 to 29.6×10-9 h-1. To further explore the role of anthropogenic emissions in ozone pollution, we used the positive matrix factorization (PMF) model to identify the major sources contributing to VOCs. The major sources in Ji'nan were vehicular exhaust and gasoline evaporation, accounting for more than 50% of the observed VOCs. Therefore, constraints on vehicular emissions is the most effective strategy to control O3 pollution in Ji'nan.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
6.
Artículo en Inglés | MEDLINE | ID: mdl-28216593

RESUMEN

Tetrahymena pyriformis, a freshwater protozoan, is common in aquatic systems. Arsenic detoxification through biotransformation by T. pyriformis is important but poorly understood. Arsenic metabolic pathways (including cellular accumulation, effluxion, biomethylation, and volatilization) of T. pyriformis were investigated at various phosphate concentrations. The total intracellular As concentration increased markedly as the external phosphate concentration decreased. The highest concentration was 168.8 mg·kg-1 dry weight, after exposure to As(V) for 20 h. Inorganic As was dominant at low phosphate concentrations (3, 6, and 15 mg·L-1), but the concentration was much lower at 30 mg·L-1 phosphate, and As(V) contributed only ~7% of total cellular As. Methylated As contributed 84% of total As at 30 mg·L-1 phosphate, and dimethylarsenate (DMAs(V)) was dominant, contributing up to 48% of total As. Cellular As effluxion was detected, including inorganic As(III), methylarsenate (MAs(V)) and DMAs(V). Volatile As was determined at various phosphate concentrations in the medium. All methylated As concentrations (intracellular, extracellular, and volatilized) had significant linear positive relationships with the initial phosphate concentration. To the best of our knowledge, this is the first study of As biotransformation by protozoa at different phosphate concentrations.


Asunto(s)
Arsénico/metabolismo , Biotransformación , Inactivación Metabólica , Fosfatos/metabolismo , Tetrahymena pyriformis/metabolismo , Volatilización , Agua Dulce/microbiología
7.
J Environ Monit ; 13(9): 2605-11, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21829798

RESUMEN

The concentrations of organochlorine pesticides (OCPs) in atmospheric particulate matter in Jinan, China, over the period from July 2009 to June 2010, were determined to study their pollution levels, compositions, size distribution and seasonal variations. All target compounds except endosulfan sulfate were detected. The annual average concentration of ∑18 OCPs was 92 ± 82 pg m(-3). Total HCH, total endrin, aldrin, endosulfan compounds and total DDT compounds were the primary components, accounting for approximately 27%, 20%, 16%, 14% and 10% of total OCPs, respectively. The annual mean ng g(-1) concentrations of ∑18 OCPs in PM(2.5), PM(5), PM(10) and TSP were 481 ± 190, 433 ± 161, 414 ± 158 and 264 ± 193, respectively, indicating that most OCPs tend to be strongly absorbed by fine air particles which were strongly related to a potential health risk. Distinct seasonal trends were found in OCPs concentrations with high concentrations appearing in November and March whereas low concentrations appeared in the summer, which were significantly positively correlated with particulate mass concentrations and Air Pollution Index (API). The high OCPs levels could be attributed to the seasonal usage, long-range atmospheric transport as well as adverse meteorological conditions.


Asunto(s)
Contaminantes Atmosféricos/análisis , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , China , Ciudades/estadística & datos numéricos , Monitoreo del Ambiente , Hidrocarburos Clorados/química , Tamaño de la Partícula , Plaguicidas/química , Estaciones del Año
8.
J Hazard Mater ; 163(2-3): 967-72, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18760532

RESUMEN

To investigate the interspecies variance of Dioxin-like polychlorinated biphenyls (DL-PCBs) in the plants from modern Yellow River delta, the concentrations of 12 DL-PCBs congeners were examined in five plant species and their associated soils. The DL-PCBs concentrations in plants (2.32-287.60 ng/kg dry weight) were low compared to most published literature, and the concentrations and ratios of DL-PCBs congeners in plants varied greatly among species. The properties of plants and PCBs were then studied to explore the factors affecting the interspecies variance of DL-PCBs accumulation. The plants with the smallest variance of morphological and physiological characteristics (Imperata cylindrical var. Major and Phragmites australis (Cav.) Trin. ex Steud) had the most similar accumulation patterns of DL-PCBs among the species tested. As the octanol-air partitioning coefficient (K(oa)) of the DL-PCBs increased, interspecies variance decreased on the whole plant level. Interestingly, the correlation between the DL-PCBs concentrations in plants and log K(oa) of congeners was found to be significant for annual plants, but for perennial plants it was not significant. Thus the patterns of uptake of DL-PCBs are different between annual and perennial plants.


Asunto(s)
Monitoreo del Ambiente/métodos , Plantas/metabolismo , Bifenilos Policlorados/análisis , Ríos , Contaminantes del Suelo/análisis , Especificidad de la Especie
9.
Huan Jing Ke Xue ; 28(12): 2771-6, 2007 Dec.
Artículo en Chino | MEDLINE | ID: mdl-18290435

RESUMEN

The concentrations of 12 dioxin-like polychlorinated biphenyls (PCBs) in twenty two soil samples collected from modern Yellow River Delta were determined by dual capillary GC-ECD associated with GC-MS. Principle component analysis (PCA) was applied in analysing the dioxin-like PCBs data to obtain types, sources, percentages of source contribution and the congener composition of PCBs in the Delta on the congener level. The results indicated that four types of PCBs contamination sources affecting the PCBs distribution pattern were apportioned in the Delta. The first source was water runoff (non-point source), which was from the industrial production and use by the enterprises along the Yellow River, and it contributed 49.6% of the total contamination burden in the Delta, its dioxin-like PCBs profile was similar to native PCBs and Aroclorl221; the second and third types of PCBs sources were point sources, whose percentages of contribution were 15.0% and 10.1% respectively, the composition of the second source was similar to that of Aroclor1221 and Aroclor1242, the composition of the third source was similar to that of Aroclor1260; the fourth source is believed to be non-point source which was from the atmospheric dry and wet precipitation, it contributed 8.4%, its profile have similarity composition of the integration of Aroclor1242, Aroclor1248 and Aroclor1260.


Asunto(s)
Monitoreo del Ambiente/métodos , Bifenilos Policlorados/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , China , Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos/química , Residuos Industriales/análisis , Análisis de Componente Principal , Ríos , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...