Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Sci Total Environ ; 924: 171707, 2024 May 10.
Article En | MEDLINE | ID: mdl-38490429

Soil salinization is one of the major soil degradation threats worldwide, and parameters related to soil quality and ecosystem multifunctionality (EMF) are crucial for evaluating the success of reclamation efforts in saline-sodic wasteland (WL). Microbial metabolic limitation is also one of the main factors that influences EMF in agricultural cropping systems. A ten-year localization experiment was conducted to reveal the key predictors of soil quality index (SQI) values, microbial metabolic characteristics, and EMF in different farmland cropping systems. A random forest model showed that the ß-glucosidase (BG), cellobiosidase (CBH) and saturated hydraulic conductivity (SHC) of the SQI factors were the main driving forces of soil EMF. Compared to monoculture models, such as paddy field (PF) or upland field (UF), the converted paddy field to upland field (CF) cropping system was most effective at improving EMF in reclaimed saline-sodic WL, increasing this metric by 275.35 %. CF integrates practices from both PF and UF planting systems, improved soil quality and relieves microbial metabolic limitation. Specifically, both CF and PF significantly reduced soil pH (by 16-23 %) and sodium adsorption ration (SAR) (by 65-83 %) and significantly reduced the abundance of large macroaggregates. Moreover, CF significantly improved soil saturated hydraulic conductivity relative to PF and UF (p < 0.05), indicating an improvement in soil physical properties. Overall, although reclamation improved SQI compared to WL (0.25), the EMF of CF (0.56) was significantly higher than that of other treatments (p < 0.05). Thus, while increasing SQI can improve soil EMF, it was not as effective alone as it was when combined with more comprehensive efforts that focus on improving various soil properties and alleviating microbial metabolic limitations. Therefore, our results suggested that future saline-sodic wasteland reclamation efforts should avoid monoculture systems to enhance soil EMF.


Ecosystem , Soil , Soil/chemistry , Sodium/chemistry , Adsorption
2.
Environ Sci Pollut Res Int ; 30(30): 75681-75693, 2023 Jun.
Article En | MEDLINE | ID: mdl-37222895

Soil acidification is a worldwide eco-environmental problem detrimental to plant growth and threatening food security. In this study, calcium poly(aspartic acid) (PASP-Ca) and calcium poly-γ-glutamic acid (γ-PGA-Ca) were obtained through cation exchange and used to mitigate soil acidity owing to high solubility and complexing capability. Three rates at 6.7, 13.4, and 20.1 g kg-1, denoted as PASP-Ca1, PASP-Ca2, and PASP-Ca3, and γ-PGA-Ca (7.4 g kg-1) were surface-applied and compared with conventional lime (CaCO3, 2.5 g kg-1) along with control in two soil layers (top soil 0-10 cm, subsoil 10-20 cm). After leaching, various soil properties and aluminum fractions were measured to assess their ameliorative performance and mechanisms. Although lime achieved the highest soil pH (6.91) in the topsoil followed by PASP-Ca and γ-PGA-Ca (pH: 5.57-6.33), it had less effect on subsoil increase (5.3) vs. PASP-Ca and γ-PGA-Ca (pH: 5.44-5.74). Surface-applied PASP-Ca demonstrated efficiency in elevating soil pH and reducing exchangeable acidity, mainly as exchangeable Al3+, whereas γ-PGA-Ca addition superiorly improved soil pH buffering capacity (pHBC). Moreover, PASP-Ca and γ-PGA-Ca addition improved organic carbon by 34.4-44.9%, available P by 4.80-20.71%, and cation exchange capacity (CEC) by 6.19-29.2%, thus greatly enhanced soil fertility. Ca2+ from polyAA-Ca promoted the displacement of exchangeable Al3+ or H+ from soil colloid, which were subsequently complexed or protonated and facilitated leaching. Additionally, the transformation into stable organo-aluminum fractions via complexation inhibited further hydrolysis. Under PASP-Ca or γ-PGA-Ca addition, the saturation of aluminum in cation exchange complex was reduced 2.91-7.81% compared to the control without addition amendments. Thus, PASP-Ca and γ-PGA-Ca can serve as potent ameliorants to alleviate soil acidity and aluminum toxicity for sustainable agricultural development.


Calcium , Soil , Soil/chemistry , Glutamic Acid , Aluminum , Polyglutamic Acid/chemistry , Cations
3.
Environ Res ; 214(Pt 4): 114160, 2022 11.
Article En | MEDLINE | ID: mdl-36027960

In recent years, carbon quantum dots (CQDs) have received widespread attention owing to their non-toxicity, sustainability, excellent photostability, and intrinsic photoluminescence properties. In particular, CQDs have attracted considerable interest for visible-light-driven photocatalysis because of their excellent electron transfer characteristics and high light capture efficiency. Many studies have reported CQDs/photocatalyst composite systems constructed to make full use of the solar spectrum, improving the ability of photocatalytic materials to degrade organic pollutants. Here, we review the recent research on CQDs-based photocatalysts, and their ability to remove environmental pollutants, with a special emphasis on degradation mechanisms. Several improvements in the catalytic response of CQDs to visible light are also included. In addition, we discuss the aspects that should be considered to construct composite materials based on CQD characteristics and the potential applications of CQD-based photocatalysts for efficient utilization of visible light.


Environmental Pollutants , Quantum Dots , Carbon , Catalysis , Light
4.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Article En | MEDLINE | ID: mdl-35889590

Formaldehyde (HCHO) is a ubiquitous indoor pollutant that seriously endangers human health. The removal of formaldehyde effectively at room temperature has always been a challenging problem. Here, a kind of amino-fullerene derivative (C60-EDA)-modified titanium dioxide (C60-EDA/TiO2) was prepared by one-step hydrothermal method, which could degrade the formaldehyde under solar light irradiation at room temperature with high efficiency and stability. Importantly, the introduction of C60-EDA not only increases the adsorption of the free formaldehyde molecules but also improves the utilization of sunlight and suppresses photoelectron-hole recombination. The experimental results indicated that the C60-EDA/TiO2 nanoparticles exhibit much higher formaldehyde removal efficiency than carboxyl-fullerene-modified TiO2, pristine TiO2 nanoparticles, and almost all other reported formaldehyde catalysts especially in the aspect of the quality of formaldehyde that is treated by catalyst with unit mass (mHCHO/mcatalyst = 40.85 mg/g), and the removal efficiency has kept more than 96% after 12 cycles. Finally, a potential formaldehyde degradation pathway was deduced based on the situ diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) and reaction intermediates. This work provides some indications into the design and fabrication of the catalysts with excellent catalytic performances for HCHO removal at room temperature.

5.
Angew Chem Int Ed Engl ; 61(15): e202117815, 2022 04 04.
Article En | MEDLINE | ID: mdl-35107863

Graphene has demonstrated broad applications due to its prominent properties. Its molecular structure makes graphene achiral. Here, we propose a direct way to prepare chiral graphene by transferring chiral structural conformation from chiral conjugated amino acids onto graphene basal plane through π-π interaction followed by thermal fusion. Using atomic resolution transmission electron microscopy, we estimated an areal coverage of the molecular imprints (chiral regions) up to 64 % on the basal plane of graphene (grown by chemical vapor deposition). The high concentration of molecular imprints in their single layer points to a close packing of the deposited amino acid molecules prior to "thermal fusion". Such "molecular chirality-encoded graphene" was tested as an electrode in electrochemical enantioselective recognition. The chirality-encoded graphene might find use for other chirality-related studies and the encoding procedure might be extended to other two-dimensional materials.


Graphite , Amino Acids/chemistry , Molecular Conformation , Molecular Structure , Stereoisomerism
6.
ACS Appl Mater Interfaces ; 11(14): 13234-13243, 2019 Apr 10.
Article En | MEDLINE | ID: mdl-30892015

Lithium-sulfur (Li-S) batteries have received significant attention due to the high theoretical specific capacity of sulfur (1675 mA h g-1). However, the practical applications are often handicapped by sluggish electrochemical kinetics and the "shuttle effect" of electrochemical intermediate polysulfides. Herein, we propose an in-situ copolymerization strategy for covalently confining a sulfur-containing copolymer onto reduced graphene oxide (RGO) to overcome the aforementioned challenges. The copolymerization was performed by heating elemental sulfur and isopropenylphenyl-functionalized RGO to afford a sulfur-containing copolymer, that is, RGO- g-poly(S- r-IDBI), which is featured by a high sulfur content and uniform distribution of the poly(S- r-IDBI) on RGO sheets. The covalent confinement of poly(S- r-IDBI) onto RGO sheets not only enhances the Li+ diffusion coefficients by nearly 1 order of magnitude, but also improves the mechanical properties of the cathodes and suppresses the shuttle effect of polysulfides. As a result, the RGO- g-poly(S- r-IDBI) cathode exhibits an enhanced sulfur utilization rate (10% higher than that of an elemental sulfur cathode at 0.1C), an improved rate capacity (688 mA h g-1 for the RGO- g-poly(S- r-IDBI) cathode vs 400 mA h g-1 for an elemental sulfur cathode at 1C), and a high cycling stability (a capacity decay of 0.021% per cycle, less than one-tenth of that measured for an elemental sulfur cathode).

7.
ACS Appl Mater Interfaces ; 11(3): 3087-3097, 2019 Jan 23.
Article En | MEDLINE | ID: mdl-30586280

Porous conjugated polymers offer enormous potential for energy storage because of the combined features of pores and extended π-conjugated structures. However, the drawbacks such as low pore volumes and insolubilities of micro- and mesoporous conjugated polymers restrict the loading of electroactive materials and thus energy storage performance. Herein, we report the synthesis of iron-doped macroporous conjugated polymers for hosting sulfur as the cathode of high-performance lithium-sulfur (Li-S) batteries. The macroporous conjugated polymers are synthesized via in situ growth of poly(3-hexylthiophene) (P3HT) from reduced graphene oxide (RGO) sheets, followed by gelation of the composite (RGO- g-P3HT) in p-xylene and freeze-drying. The network structures of the macroporous materials can be readily tuned by controlling the chain length of P3HT grafted to RGO sheets. The large pore volumes of the macroporous RGO- g-P3HT materials (ca. 34 cm3 g-1) make them excellent frameworks for hosting sulfur as cathodes of Li-S batteries. Furthermore, incorporation of Fe into the macroporous RGO- g-P3HT cathode results in reduced polarization, enhanced specific capacity (1,288, 1,103, and 907 mA h g-1 at 0.05, 0.1, and 0.2 C, respectively), and improved cycling stability (765 mA h g-1 after 100 cycles at 0.2 C). Density functional theory calculations and in situ characterizations suggest that incorporation of Fe enhances the interactions between lithium polysulfides and the P3HT framework.

8.
Water Environ Res ; 83(4): 368-72, 2011 Apr.
Article En | MEDLINE | ID: mdl-21553592

Using modified banana peel as a biosorbent to treat water containing ammonia-nitrogen (NH4(+)-N) was studied. Related parameters in the sorptional process, such as chemical modification, pH, and contact time were investigated. The experimental results showed that banana peel modified by 30% sodium hydroxide (NaOH) and mesothermal microwaves (NMBPs) can greatly improve the sorption removal for NH4(+)-N. The kinetics study revealed that the sorption behavior better fit the pseudo-second-order equation than the Lagergren first-order equation. Fourier transform infrared absorption spectrum analysis of banana peels and NMBPs before and after NH4(+)-N sorption revealed that the activity of hydroxyl groups at the surface of the banana peels was strengthened after modification, and nitrogenous groups appeared after biosorpting the NH4(+)-N. In the end, metallurgical wastewater containing a low concentration of NH4(+)-N was treated by NMBPs. The initial NH4(+)-N concentration of 138 mg/L was reduced to 13 mg/L in 25 minutes by 4 g/L NMBPs at pH 10.


Ammonia/chemistry , Musa , Nitrogen/chemistry , Adsorption , Hydrogen-Ion Concentration
...