Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 24(14): 3470-3479, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38896021

RESUMEN

Liver cancer, characterized as a kind of malignant tumor within the digestive system, poses great health harm, and immune escape stands out as an important reason for its occurrence and development. Chemokines, pivotal in guiding immune cells' migration, is necessary to initiate and deliver an effective anti-tumor immune response. Therefore, understanding the chemotactic environment and identifying chemokines that regulate recruitment of immune cells to the tumor microenvironment (TME) are critical to improve current immunotherapy interventions. Herein, we report a well-defined inverse opal scaffold generated with a microfluidic emulsion template for the construction of a vascularized liver tumor model, offering insights into immune cells' recruitment. Due to the excellent 3D porous morphology of the inverse opal scaffold, human hepatocellular carcinoma cells can aggregate in the pores of the scaffold to form uniform multicellular tumor spheroids. More attractively, the vascularized liver tumor model can be achieved by constructing a 3D co-culture system involving endothelial cells and hepatocellular carcinoma cells. The results demonstrate that the 3D co-cultured tumor cells increase the neutrophil chemokines remarkably and recruit neutrophils to tumor tissues, then promote tumor progression. This approach opens a feasible avenue for realizing a vascularized liver tumor model with a reliable immune microenvironment close to that of a solid tumor of liver cancer.


Asunto(s)
Técnicas de Cocultivo , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Técnicas Analíticas Microfluídicas/instrumentación , Dispositivos Laboratorio en un Chip , Quimiocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Línea Celular Tumoral , Andamios del Tejido/química , Células Hep G2 , Esferoides Celulares
2.
Proc Natl Acad Sci U S A ; 121(22): e2322479121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771871

RESUMEN

The significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials. Our results show that macrophages can effectively target CRC cells with low metastatic potential, due to the strong contraction exhibited by the cancer cells on the ECM, and that cancer cells with high metastatic potential demonstrated weakened contractions on the ECM and can thus evade macrophage attack to achieve immune escape. Our findings regarding the intricate mechanical interactions between immune cells and cancer cells can serve as a crucial reference for further exploration of cancer immunotherapy strategies.


Asunto(s)
Neoplasias Colorrectales , Matriz Extracelular , Macrófagos , Escape del Tumor , Microambiente Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Macrófagos/inmunología , Humanos , Microambiente Tumoral/inmunología , Matriz Extracelular/metabolismo , Matriz Extracelular/inmunología , Línea Celular Tumoral , Metástasis de la Neoplasia , Animales , Ratones , Comunicación Celular/inmunología
3.
NPJ Syst Biol Appl ; 10(1): 26, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453929

RESUMEN

Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell Morphological Entropy (CME), developed by combining parametric morphological analysis with Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at multiple length scales through the deviation from a perfectly circular shape, is illustrated using a variety of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids. The analysis demonstrates that the CME-based approach provides an effective and physically interpretable tool to measure morphology in real-time across multiple length scales. It provides deeper insight into cell migration and contributes to the understanding of different behavioral modes and collective cell motility in more complex microenvironments.


Asunto(s)
Entropía , Movimiento Celular , Línea Celular Tumoral
4.
Adv Sci (Weinh) ; 11(13): e2306088, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243642

RESUMEN

The unprecedented demand for variants diagnosis in response to the COVID-19 epidemic has brought the spotlight onto rapid and accurate detection assays for single nucleotide polymorphisms (SNPs) at multiple locations. However, it is still challenging to ensure simplicity, affordability, and compatibility with multiplexing. Here, a novel technique is presented that combines peptide nucleic acid (PNA) clamps and near-infrared (NIR)-driven digital polymerase chain reaction (dPCR) to identify the Omicron and Delta variants. This is achieved by simultaneously identifying highly conserved mutated signatures at codons 19, 614, and 655 of the spike protein gene. By microfluidically introducing graphene-oxide-nanocomposite into the assembled gelatin microcarriers, they achieved a rapid temperature ramping-up rate and switchable gel-to-sol phase transformation synchronized with PCR activation under NIR irradiation. Two sets of duplex PCR reactions, each classifying respective PNA probes, are emulsified in parallel and illuminated together using a homemade vacuum-based droplet generation device and a programmable NIR control module. This allowed for selective amplification of mutant sequences due to single-base-pair mismatch with PNA blockers. Sequence-recognized bioreactions and fluorescent-color scoring enabled quick identification of variants. This technique achieved a detection limit of 5,100 copies and a 5-fold quantitative resolution, which is promising to unfold minor differences and dynamic changes.


Asunto(s)
COVID-19 , Ácidos Nucleicos de Péptidos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Ácidos Nucleicos de Péptidos/genética , Colorantes , Prueba de COVID-19
5.
Proc Natl Acad Sci U S A ; 120(37): e2305995120, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669392

RESUMEN

To minimize the incorrect use of antibiotics, there is a great need for rapid and inexpensive tests to identify the pathogens that cause an infection. The gold standard of pathogen identification is based on the recognition of DNA sequences that are unique for a given pathogen. Here, we propose and test a strategy to develop simple, fast, and highly sensitive biosensors that make use of multivalency. Our approach uses DNA-functionalized polystyrene colloids that distinguish pathogens on the basis of the frequency of selected short DNA sequences in their genome. Importantly, our method uses entire genomes and does not require nucleic acid amplification. Polystyrene colloids grafted with specially designed surface DNA probes can bind cooperatively to frequently repeated sequences along the entire genome of the target bacteria, resulting in the formation of large and easily detectable colloidal aggregates. Our detection strategy allows "mix and read" detection of the target analyte; it is robust and highly sensitive over a wide concentration range covering, in the case of our test target genome Escherichia coli bl21-de3, 10 orders of magnitude from [Formula: see text] to [Formula: see text] copies/mL. The sensitivity compares well with state-of-the-art sensing techniques and has excellent specificity against nontarget bacteria. When applied to real samples, the proposed technique shows an excellent recovery rate. Our detection strategy opens the way to developing a robust platform for pathogen detection in the fields of food safety, disease control, and environmental monitoring.


Asunto(s)
ADN , Poliestirenos , Antibacterianos , Coloides , Monitoreo del Ambiente , Escherichia coli
6.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906989

RESUMEN

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Asunto(s)
Técnicas Biosensibles , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis , Microfluídica/métodos , Pruebas de Sensibilidad Microbiana , Proteínas , Técnicas Analíticas Microfluídicas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
7.
Research (Wash D C) ; 6: 0063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36939442

RESUMEN

Microglia are resident macrophage cells in the central nervous system that search for pathogens or abnormal neural activities and migrate to resolve the issues. The effective search and targeted motion of macrophages mean dearly to maintaining a healthy brain, yet little is known about their migration dynamics. In this work, we study microglial motion with and without the presence of external mechanostimuli. We discover that the cells are promptly attracted by the applied forces (i.e., mechanotaxis), which is a tactic behavior as yet unconfirmed in microglia. Meanwhile, in both the explorative and the targeted migration, microglia display dynamics that is strikingly analogous to bacterial run-and-tumble motion. A closer examination reveals that microglial run-and-tumble is more sophisticated, e.g., they display a short-term memory when tumbling and rely on active steering during runs to achieve mechanotaxis, probably via the responses of mechanosensitive ion channels. These differences reflect the sharp contrast between microglia and bacteria cells (eukaryotes vs. prokaryotes) and their environments (compact tissue vs. fluid). Further analyses suggest that the reported migration dynamics has an optimal search efficiency and is shared among a subset of immune cells (human monocyte and macrophage). This work reveals a fruitful analogy between the locomotion of 2 remote systems and provides a framework for studying immune cells exploring complex environments.

8.
Fundam Res ; 3(5): 809-812, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38933288

RESUMEN

Cellular collective motion in confluent epithelial monolayers is involved in many processes such as embryo development, carcinoma invasion, and wound healing. The development of new chemical strategies to achieve large-scale control of cells' collective motion is essential for biomedical applications. Here a series of DNA nanostructures with different dimensions were synthesized and their influences on cells' collective migration and packing behaviors in epithelial monolayers were investigated. We found that the framed DNA nanoassemblies effectively reduced the cells' speed by increasing the rigidity of cells, while the lipid-DNA micelles had a more pronounced effect on cells' projection area and shape factor. These DNA nanostructures all significantly enhanced the dependence of cells' speed on their shape factor. Our results indicate that cells' mobility in monolayers can be manipulated by chemical intercellular interactions without any genetic intervention. This may provide a new chemical strategy for tissue engineering and tumor therapy.

9.
Smart Med ; 2(1): e20220035, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39188563

RESUMEN

The lung is the respiratory organ of the human body, and the alveoli are the most basic functional units of the lung. Herein, a photo-responsive stretchable Janus membrane was proposed for the reconstruction of the alveolar-capillary barrier in vitro. This Janus membrane was fabricated by photocrosslinking methylacrylamide gelatin (Gelma) hydrogel and N-isoacrylamide (NIPAM) hydrogel mixed with graphene oxide (GO). The Gelma hydrogel containing large amounts of collagen provides a natural extracellular matrix environment for cell growth, while the temperature-sensitive NIPAM hydrogel combined with GO gives the membrane a light-controlled stretching property. Based on this Janus membrane, an open polydimethylsiloxane chip was established to coculture alveolar epithelial cells and vascular endothelial cells at the air-liquid interface. It was demonstrated that the alveolar epithelial cells cultured on the upper side of the Janus membrane could express epithelial cell marker protein E-cadherin and secrete alveolar surfactant. In addition, VE-cadherin, an endothelium-specific protein located at the junction between endothelial cells, was also detected in vascular endothelial cells cultured on the underside of Janus membrane. The constructed lung tissue model with the dynamically stretchable Janus membrane is well-suited for COVID-19 infection studies and drug testing.

10.
J Colloid Interface Sci ; 624: 546-554, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35679642

RESUMEN

HYPOTHESIS: Graphene-based microparticles materials are broadly utilized in all sorts of fields owing to their outstanding properties. Despite great progress, the present graphene microparticles still face challenges in the aspects of size uniformity, motion flexibility, and tailorable surface chemistry, which limit their application in some specific fields, such as versatile adsorption. Hence, the development of novel graphene microparticles with the aforementioned characteristics is urgently required. EXPERIMENTS: We presented a simple microfluidic electrospray strategy to generate magnetic Janus reduced graphene oxide/carbon (rGO/C) composite microspheres with a variety of unique features. Specifically, the microfluidic electrospray method endowed the obtaiend microspheres with sufficient size uniformity as well as magnetic responsive motion ability. Additionally, magnetic-mediated surface assembly of phase transition lysozyme (PTL) nanofilm on the microspheres rendered the deposited area hydrophilic while non-deposited area hydrophobic. FINDINGS: Such magnetic Janus rGO/C composite microspheres with regionalized wettability characteristics not only showed prominent performance in adsorbing organic liquids with high adsorption capacity and remarkable reusability but also displayed satisfying biocompatibility for the efficient uptake of bilirubin. More encouragingly, the microspheres could serve as adsorbents in a simulative hemoperfusion setup, which further demonstrated the clinical application potential of the magnetic Janus rGO/C microspheres. Thus, we anticipate that the obtained magnetic Janus rGO/C composite microspheres could show multifunctional properties toward water treatment and blood molecule cleaning.


Asunto(s)
Grafito , Adsorción , Carbono , Grafito/química , Fenómenos Magnéticos , Microfluídica , Microesferas , Porosidad
11.
Biosens Bioelectron ; 211: 114344, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35598553

RESUMEN

Digital PCR (dPCR) is built on partitioning reagent to the extent that single template molecules are amplified and visualized individually, whereby offers higher precision and other better indicators than the former PCR techniques. Accordingly, dPCR is particular suited for precision medicine applications that require accurate molecular characterization with high sensitivity. This review aims to summarize different applications of dPCR in precision medicine. The state-of-the-art progress of dPCR technique is first introduced, including novel prototype machines and dPCR-integrated biochips. Then the clinical applications based on dPCR technique are briefly described, for instance, detecting biomarkers from tissues and various biopsies components including cell free DNA, circulating tumor cells, extracellular vesicles, and proteins. These emerging dPCR applications have been accepted as auxiliary diagnostic methods in various areas like oncology, infectious disease, and the like. Meanwhile, a usage overview is provided, focusing on successful clinical pilot studies that dPCR is utilized to improve the performances of rare event detection, fine resolution of gene expression analysis, and multiplexing. Finally, some implications and challenges in future research concerning dPCR technique are also discussed.


Asunto(s)
Técnicas Biosensibles , Medicina de Precisión , Reacción en Cadena de la Polimerasa/métodos , Tecnología
12.
BMC Cancer ; 22(1): 438, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449036

RESUMEN

BACKGROUND: Cancer metastasis is the main cause of mortality in cancer patients. However, the drugs targeting metastasis processes are still lacking, which is partially due to the short of effective in vitro model for cell invasion studies. The traditional 2-D culture method cannot reveal the interaction between cells and the surrounding extracellular matrix during invasion process, while the animal models usually are too complex to explain mechanisms in detail. Therefore, a precise and efficient 3-D in vitro model is highly desirable for cell invasion studies and drug screening tests. METHODS: Precise micro-fabrication techniques are developed and integrated with soft hydrogels for constructing of 3-D lung-cancer micro-environment, mimicking the pulmonary gland or alveoli as in vivo. RESULTS: A 3-D in vitro model for cancer cell culture and metastasis studies is developed with advanced micro-fabrication technique, combining microfluidic system with soft hydrogel. The constructed microfluidic platform can provide nutrition and bio-chemical factors in a continuous transportation mode and has the potential to form stable chemical gradient for cancer invasion research. Hundreds of micro-chamber arrays are constructed within the collagen gel, ensuring that all surrounding substrates for tumor cells are composed of natural collagen hydrogel, like the in vivo micro-environment. The 3-D in vitro model can also provide a fully transparent platform for the visual observation of the cell morphology, proliferation, invasion, cell-assembly, and even the protein expression by immune-fluorescent tests if needed. The lung-cancer cells A549 and normal lung epithelial cells (HPAEpiCs) have been seeded into the 3-D system. It is found out that cells can normally proliferate in the microwells for a long period. Moreover, although the cancer cells A549 and alveolar epithelial cells HPAEpiCs have the similar morphology on 2-D solid substrate, in the 3-D system the cancer cells A549 distributed sparsely as single round cells on the extracellular matrix (ECM) when they attached to the substrate, while the normal lung epithelial cells can form cell aggregates, like the structure of normal tissue. Importantly, cancer cells cultured in the 3-D in vitro model can exhibit the interaction between cells and extracellular matrix. As shown in the confocal microscope images, the A549 cells present round and isolated morphology without much invasion into ECM, while starting from around Day 5, cells changed their shape to be spindle-like, as in mesenchymal morphology, and then started to destroy the surrounding ECM and invade out of the micro-chambers. CONCLUSIONS: A 3-D in vitro model is constructed for cancer cell invasion studies, combining the microfluidic system and micro-chamber structures within hydrogel. To show the invasion process of lung cancer cells, the cell morphology, proliferation, and invasion process are all analyzed. The results confirmed that the micro-environment in the 3-D model is vital for revealing the lung cancer cell invasion as in vivo.


Asunto(s)
Matriz Extracelular , Neoplasias Pulmonares , Animales , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Hidrogeles/análisis , Hidrogeles/química , Hidrogeles/metabolismo , Neoplasias Pulmonares/metabolismo , Invasividad Neoplásica , Microambiente Tumoral
13.
Research (Wash D C) ; 2022: 9819154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35224503

RESUMEN

SARS-CoV-2 has caused a severe pneumonia pandemic worldwide with high morbidity and mortality. How to develop a preclinical model for recapitulating SARS-CoV-2 pathogenesis is still urgent and essential for the control of the pandemic. Here, we have established a 3D biomimetic alveolus-on-a-chip with mechanical strain and extracellular matrix taken into consideration. We have validated that the alveolus-on-a-chip is capable of recapitulating key physiological characteristics of human alveolar units, which lays a fundamental basis for viral infection studies at the organ level. Using virus-analogous chemicals and pseudovirus, we have explored virus pathogenesis and blocking ability of antibodies during viral infection. This work provides a favorable platform for SARS-CoV-2-related researches and has a great potential for physiology and pathophysiology studies of the human lung at the organ level in vitro.

14.
Acta Biomater ; 138: 21-33, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34718181

RESUMEN

Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Microfluídica , Sistemas de Liberación de Medicamentos , Medicina Regenerativa , Ingeniería de Tejidos
15.
Smart Med ; 1(1): e20220014, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39188730

RESUMEN

Osteoarthritis (OA) is a common disease that endangers millions of middle-aged and elderly people worldwide. Researchers from different fields have made great efforts and achieved remarkable progress in the pathogenesis and treatment of OA. However, there is still no cure for OA. In this review, we discuss the pathogenesis of OA and summarize the current clinical therapies. Moreover, we introduce various natural and synthetic biomaterials for drug release, cartilage transplantation, and joint lubricant during the OA treatment. We also present our perspectives and insights on OA treatment in the future. We hope that this review will foster communication and collaboration among biological, clinical, and biomaterial researchers, paving the way for OA therapeutic breakthroughs.

16.
Smart Med ; 1(1): e20220008, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39188741

RESUMEN

The monitoring of mechanical indexes involved in body movement has attracted immense interest in the diagnosis of neurodegenerative diseases. Here, we present a hybrid flexible conductive structural color (SC) film with the capability of dual-signal mechanics screening. The film is constructed by oxidatively polymerizing pyrrole on the surface of an inverse opal polyurethane (IPU) membrane, which can be utilized to measure the mechanical indexes through resistance change. Owing to the inverse opal structure, the film shows visual structural color change when stretched and released according to the body movement. Additionally, the highly uniform ordered porous structure endows the conductive film with a lower coefficient of variance on relative resistance change. Benefiting from these features, we have demonstrated that such a flexible conductive SC film could monitor Parkinson's disease (PD) by detecting mechanical indexes simultaneously via dual signals. These features indicate the great value of the stretchable conductive SC films in mechanics sensing applications.

17.
Research (Wash D C) ; 2021: 9893131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957406

RESUMEN

Studies on pattern formation in coculture cell systems can provide insights into many physiological and pathological processes. Here, we investigate how the extracellular matrix (ECM) may influence the patterning in coculture systems. The model coculture system we use is composed of highly motile invasive breast cancer cells, initially mixed with inert nonmetastatic cells on a 2D substrate and covered with a Matrigel layer introduced to mimic ECM. We observe that the invasive cells exhibit persistent centripetal motion and yield abnormal aggregation, rather than random spreading, due to a "collective pulling" effect resulting from ECM-mediated transmission of active contractile forces generated by the polarized migration of the invasive cells along the vertical direction. The mechanism we report may open a new window for the understanding of biological processes that involve multiple types of cells.

18.
J Colloid Interface Sci ; 604: 737-745, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34293531

RESUMEN

HYPOTHESIS: Oil adsorption is significant for water purification and environmental protection. However, the conventional bulk sorbents face the predicament of uncontrollable motion as well as hydrophobic nature the whole body, which largely restricts their uptake capacity underwater. Hence, novel adsorbent material for high-efficient oil uptake both at the surface and under the water is urgently required. EXPERIMENTS: We presented a phase-transition lysozyme coating approach to fabricate porous carbon nanotube microspheres with tailorable surface wettability areas for versatile oil adsorption. Because of the existence of magnetic nanoparticle in one hemisphere, the multi-sites coating was easily achieved by constantly changing orientations of the magnetic field. Owing to the integration of various hydrophilic functional groups in lysozyme as well as remarkable adhesion to virtually arbitrary materials, the intrinsically hydrophobic surface of the microspheres was partially modified hydrophilic on multiple sites. FINDINGS: It was demonstrated that the unique surface wettability feature and the porous structure enabled the microspheres to adsorb multiple contaminants both floating on the water and underwater. Besides, the magnetic-responsive ability allowed for controllable collection of oil contaminants. These features, along with the reusability, make the porous carbon nanotube microspheres excellent adsorbents for water purification.


Asunto(s)
Nanotubos de Carbono , Adsorción , Microesferas , Porosidad , Humectabilidad
19.
Lab Chip ; 21(15): 3004-3018, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-34159958

RESUMEN

Breast cancer metastasis is a complex process controlled by multiple factors, including various cell-cell interactions, cell-environment coupling, and oxygen, nutrient and drug gradients that are intimately related to the heterogeneous breast tissue structure. In this study, we constructed a high-throughput in vitro biochip system containing an array of 642 microchambers arranged in a checkerboard configuration, with each chamber embedded in a composite extracellular matrix (ECM) composed of engineered collagen and Matrigel to mimic local heterogeneous environment in vivo. In addition, a controllable complex tetragonal chemical concentration profile can be achieved by imposing chemical compounds at the four boundaries of the chip, leading to distinct local nutrient and/or drug gradients in the individual microchambers. Here, the microchamber array with composite ECM (MACECM) device aims to simulate multiple tumor cell niches composed of both breast epithelial cells (MCF-10A-GFP) and metastatic breast cancer cells (MDA-MB-231-RFP), which enables systematic studies of cell responses to a variety of biochemical conditions. The results obtained from the MACECM studies indicate that discoidin domain receptor 1 (DDR1) inhibitor 7rh and matrix metalloproteinase inhibitor batimastat, in association with epidermal growth factor (EGF) had no significant effects on the growth of MCF-10A-GFP cells, but had significant effects on DDR1 expression and the related migratory behavior of MDA-MB-231-RFP cells. The MACECM design not only enables the construction of a more realistic in vitro model for investigating cancer cell migration mechanisms but also has considerable potential for further development as a platform for next-generation high-throughput and therapeutic screening (e.g., anti-cancer drug evaluation) and personalized medicine.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Células Epiteliales , Matriz Extracelular , Femenino , Humanos
20.
Biophys J ; 120(12): 2552-2565, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940024

RESUMEN

Cell migration, which can be significantly affected by intracellular signaling pathways and extracellular matrix, plays a crucial role in many physiological and pathological processes. Cell migration is typically modeled as a persistent random walk, which depends on two critical motility parameters, i.e., migration speed and persistence time. It is generally very challenging to efficiently and accurately quantify the migration dynamics from noisy experimental data. Here, we introduce the normalized Shannon entropy (SE) based on the FPS of cellular velocity autocovariance function to quantify migration dynamics. The SE introduced here possesses a similar physical interpretation as the Gibbs entropy for thermal systems in that SE naturally reflects the degree of order or randomness of cellular migration, attaining the maximal value of unity for purely diffusive migration (i.e., SE = 1 for the most "random" dynamics) and the minimal value of 0 for purely ballistic dynamics (i.e., SE = 0 for the most "ordered" dynamics). We also find that SE is strongly correlated with the migration persistence but is less sensitive to the migration speed. Moreover, we introduce the time-varying SE based on the WPS of cellular dynamics and demonstrate its superior utility to characterize the time-dependent persistence of cell migration, which typically results from complex and time-varying intra- or extracellular mechanisms. We employ our approach to analyze experimental data of in vitro cell migration regulated by distinct intracellular and extracellular mechanisms, exhibiting a rich spectrum of dynamic characteristics. Our analysis indicates that the SE and wavelet transform (i.e., SE-based approach) offers a simple and efficient tool to quantify cell migration dynamics in complex microenvironment.


Asunto(s)
Matriz Extracelular , Movimiento Celular , Difusión , Entropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA