Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 183
1.
Food Funct ; 15(7): 3522-3538, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38465872

The numerous beneficial probiotic properties of Lactobacillus reuteri (L. reuteri) include decreasing metabolic syndrome, preventing disorders linked to oxidative stress, improving gut flora imbalances, controlling immunological function, and extending life span. Exposure to ionizing radiation is closely associated with several disorders. We examined the protective and salvaging effects of L. reuteri on ionizing radiation-induced injury to the intestinal tract, reproductive system, and nervous system of Drosophila melanogaster. We also examined its effects on lifespan, antioxidant capacity, progeny development, and behavioral aspects to assess the interaction between L. reuteri and ionizing radiation-induced injury. The findings demonstrated that L. reuteri improved the median survival time following irradiation and greatly extended its lifespan. In addition, it raised SOD activity, reduced ROS levels in intestinal epithelial cells, and increased the quantity of intestinal stem cells. Furthermore, L. reuteri enhanced the adult male flies' capacity to move. It also successfully safeguarded the generations' growth and development. L. reuteri dramatically enhanced expression of the AMPKα gene and regulated expression of its pathway-related gene, mTOR, as well as the autophagy-related genes Atg1 and Atg5 in female Drosophila exposed to irradiation. Notably, no prior reports have been made on the possible effects of L. reuteri on injuries caused by irradiation. As a result, our research offers important new information regarding L. reuteri's possible role as a shield against ionizing radiation-induced injury.


Limosilactobacillus reuteri , Probiotics , Animals , Male , Female , Lactobacillus , Drosophila melanogaster , Intestines , Radiation, Ionizing , Probiotics/pharmacology
2.
Cell Rep ; 43(3): 113846, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38412097

The radioresistant signature of colorectal cancer (CRC) hampers the clinical utility of radiotherapy. Here, we find that fecal microbiota transplantation (FMT) potentiates the tumoricidal effects of radiation and degrades the intertwined adverse events in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. FMT cumulates Roseburia intestinalis (R. intestinalis) in the gastrointestinal tract. Oral gavage of R. intestinalis assembles at the CRC site and synthetizes butyrate, sensitizing CRC to radiation and alleviating intestinal toxicity in primary and CRC hepatic metastasis mouse models. R. intestinalis-derived butyrate activates OR51E1, a G-protein-coupled receptor overexpressing in patients with rectal cancer, facilitating radiogenic autophagy in CRC cells. OR51E1 shows a positive correlation with RALB in clinical rectal cancer tissues and CRC mouse model. Blockage of OR51E1/RALB signaling restrains butyrate-elicited autophagy in irradiated CRC cells. Our findings highlight that the gut commensal bacteria R. intestinalis motivates radiation-induced autophagy to accelerate CRC cell death through the butyrate/OR51E1/RALB axis and provide a promising radiosensitizer for CRC in a pre-clinical setting.


Colorectal Neoplasms , Rectal Neoplasms , Humans , Animals , Mice , Butyrates/pharmacology , Clostridiales , Azoxymethane/toxicity , Colorectal Neoplasms/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Mice, Inbred C57BL , Receptors, G-Protein-Coupled
3.
Redox Biol ; 68: 102942, 2023 Dec.
Article En | MEDLINE | ID: mdl-37918127

In this study, we executed single-cell RNA sequencing of intestinal crypts. We analyzed the differentially expressed genes (DEGs) at different time points (the first, third, and fifth days) after 13 Gy and 15 Gy abdominal body radiation (ABR) exposure and then executed gene ontology (GO) enrichment analysis, RNA velocity analysis, cell communication analysis, and ligand‒receptor interaction analysis to explore the vital events in damage repair and the multiple effects of the Wnt3/ß-catenin pathway on irradiated mice. Results from bioinformatics analysis were confirmed by a series of biological experiments. Results showed that the antibacterial response is a vital event during the damage response process after 13 Gy ABR exposure; ionizing radiation (IR) induced high heterogeneity in the transient amplification (TA) cluster, which may differentiate into mature cells and stem cells in irradiated small intestine (SI) crypts. Conducting an enrichment analysis of the DEGs between mice exposed to 13 Gy and 15 Gy ABR, we concluded that the Wnt3/ß-catenin and MIF-CD74/CD44 signaling pathways may contribute to 15 Gy ABR-induced mouse death. Wnt3/ß-catenin promotes the recovery of irradiated SI stem/progenitor cells, which may trigger macrophage migration inhibitory factor (MIF) release to further repair IR-induced SI injury; however, with the increase in radiation dose, activation of CD44 on macrophages provides the receptor for MIF signal transduction, initiating the inflammatory cascade response and ultimately causing a cytokine release syndrome. In contrast to previous research, we confirmed that inhibition of the Wnt3/ß-catenin pathway or blockade of CD44 on the second day after 15 Gy ABR may significantly protect against ABR-induced death. This study indicates that the Wnt3/ß-catenin pathway plays multiple roles in damage repair after IR exposure; we also propose a novel point that the interaction between intestinal crypt stem cells (ISCs) and macrophages through the MIF-CD74/CD44 axis may exacerbate SI damage in irradiated mice.


Signal Transduction , beta Catenin , Mice , Animals , beta Catenin/genetics , beta Catenin/metabolism , Stem Cells/metabolism , Sequence Analysis, RNA
4.
ACS Nano ; 17(14): 14079-14098, 2023 07 25.
Article En | MEDLINE | ID: mdl-37399352

Ionizing radiation (IR) is associated with the occurrence of enteritis, and protecting the whole intestine from radiation-induced gut injury remains an unmet clinical need. Circulating extracellular vesicles (EVs) are proven to be vital factors in the establishment of tissue and cell microenvironments. In this study, we aimed to investigate a radioprotective strategy mediated by small EVs (exosomes) in the context of irradiation-induced intestinal injury. We found that exosomes derived from donor mice exposed to total body irradiation (TBI) could protect recipient mice against TBI-induced lethality and alleviate radiation-induced gastrointestinal (GI) tract toxicity. To enhance the protective effect of EVs, profilings of mouse and human exosomal microRNAs (miRNAs) were performed to identify the functional molecule in exosomes. We found that miRNA-142-5p was highly expressed in exosomes from both donor mice exposed to TBI and patients after radiotherapy (RT). Moreover, miR-142 protected intestinal epithelial cells from irradiation-induced apoptosis and death and mediated EV protection against radiation enteritis by ameliorating the intestinal microenvironment. Then, biomodification of EVs was accomplished via enhancing miR-142 expression and intestinal specificity of exosomes, and thus improved EV-mediated protection from radiation enteritis. Our findings provide an effective approach for protecting against GI syndrome in people exposed to irradiation.


Enteritis , Exosomes , Extracellular Vesicles , MicroRNAs , Humans , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Exosomes/metabolism , Enteritis/metabolism
5.
J Pineal Res ; 75(2): e12897, 2023 Sep.
Article En | MEDLINE | ID: mdl-37391878

Salivary gland damage caused by ionizing radiation (IR) severely affects the patient quality of life and influences the efficacy of radiotherapy. Most current treatment modalities are palliative, so effective prevention of damage caused by IR is essential. Melatonin (MLT) is an antioxidant that has been reported to prevent IR-induced damage in a range of systems, including the hematopoietic system and gastrointestinal tract. In this study, we explored the effects of MLT on whole-neck irradiation (WNI)-induced salivary gland damage in mice. The results revealed that by protecting the channel protein AQP-5, MLT not only alleviates salivary gland dysfunction and maintains salivary flow rate, but also protects salivary gland structure and inhibits the WNI-induced reduction in mucin production and degree of fibrosis. Compared with WNI-treated mice, in those receiving MLT, we observed a modulation of oxidative stress in salivary glands via its effects on 8-OHdG and SOD2, as well as an inhibition of DNA damage and apoptosis. With respect to its radioprotective mechanism, we found that MLT may alleviate WNI-induced xerostomia partly by regulating RPL18A. In vitro, we demonstrated that MLT has radioprotective effects on salivary gland stem cells (SGSCs). In conclusion, our data this study indicate that MLT can effectively alleviate radiation-induced damage in salivary glands, thereby providing a new candidate for the prevention of WNI-induced xerostomia.


Melatonin , Xerostomia , Mice , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Quality of Life , Salivary Glands/metabolism , Salivary Glands/radiation effects , Xerostomia/drug therapy , Xerostomia/etiology , Xerostomia/prevention & control , Radiation, Ionizing
6.
Food Funct ; 14(14): 6636-6653, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37401725

High-fat diet (HFD) increases the risk of developing malignant tumors. Ionizing radiation (IR) is used as an adjuvant treatment in oncology. In this study, we investigated the effects of an 8-week 35% fat HFD on the tolerance to IR and the modulatory effect of melatonin (MLT). The results of lethal dose irradiation survival experiments revealed that the 8-week HFD altered the radiation tolerance of female mice and increased their radiosensitivity, whereas it had no comparable effects on males. Pre-treatment with MLT was, however, found to attenuate the radiation-induced hematopoietic damage in mice, promote intestinal structural repair after whole abdominal irradiation (WAI), and enhance the regeneration of Lgr5+ intestinal stem cells. 16S rRNA high-throughput sequencing and untargeted metabolome analyses revealed that HFD consumption and WAI sex-specifically altered the composition of intestinal microbiota and fecal metabolites and that MLT supplementation differentially modulated the composition of the intestinal microflora in mice. However, in both males and females, different bacteria were associated with the modulation of the metabolite 5-methoxytryptamine. Collectively, the findings indicate that MLT ameliorates the radiation-induced damage and sex-specifically shapes the composition of the gut microbiota and metabolites, protecting mice from the adverse side effects associated with HFD and IR.


Melatonin , Male , Mice , Female , Animals , Melatonin/pharmacology , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S , Intestines/microbiology , Radiation Tolerance , Mice, Inbred C57BL
7.
Eur J Nucl Med Mol Imaging ; 50(11): 3452-3464, 2023 09.
Article En | MEDLINE | ID: mdl-37278941

PURPOSE: Prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) is a superior method to predict patients' risk of cancer progression and response to specific therapies. However, its performance is limited for neuroendocrine prostate cancer (NEPC) and PSMA-low prostate cancer cells, resulting in diagnostic blind spots. Hence, identifying novel specific targets is our aim for diagnosing those prostate cancers with low PSMA expression. METHODS: The Cancer Genome Atlas (TCGA) database and our cohorts from men with biopsy-proven high-risk metastatic prostate cancer were used to identify CDK19 and PSMA expression. PDX lines neP-09 and P-16 primary cells were used for cellular uptake and imaging mass cytometry in vitro. To evaluate in vivo CDK19-specific uptake of gallium(Ga)-68-IRM-015-DOTA, xenograft mice models and blocking assays were used. PET/CT imaging data were obtained to estimate the absorbed dose in organs. RESULTS: Our study group had reported the overexpression of a novel tissue-specific gene CDK19 in high-risk metastatic prostate cancer and CDK19 expression correlated with metastatic status and tumor staging, independently with PSMA and PSA levels. Following up on this new candidate for use in diagnostics, small molecules targeting CDK19 labeled with Ga-68 (68Ga-IRM-015-DOTA) were used for PET in this study. We found that the 68Ga-IRM-015-DOTA was specificity for prostate cancer cells, but the other cancer cells also took up little 68Ga-IRM-015-DOTA. Importantly, mouse imaging data showed that the NEPC and CRPC xenografts exhibited similar signal strength with 68Ga-IRM-015-DOTA, but 68Ga-PSMA-11 only stained the CRPC xenografts. Furthermore, target specificity was elucidated by a blocking experiment on a CDK19-bearing tumor xenograft. These data concluded that 68Ga-CDK19 PET/CT was an effective technology to detect lesions with or without PSMA in vitro, in vivo, and in the PDX model. CONCLUSION: Thus, we have generated a novel PET small molecule with predictive value for prostate cancer. The findings indicate that 68Ga-CDK19 may merit further evaluation as a predictive biomarker for PET scans in prospective cohorts and may facilitate the identification of molecular types of prostate cancer independent of PSMA.


Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Humans , Male , Animals , Mice , Gallium Radioisotopes , Positron Emission Tomography Computed Tomography/methods , Prospective Studies , Prostatic Neoplasms/pathology , Positron-Emission Tomography , Cyclin-Dependent Kinases
8.
Int J Radiat Biol ; 99(10): 1607-1618, 2023.
Article En | MEDLINE | ID: mdl-36947642

PURPOSE: Intestinal injuries caused by ionizing radiation (IR) are a major complication of radiotherapy. Ferrostatin-1 (Fer-1) exerts antioxidant and anti-inflammatory effects. We investigated the influence of Fer-1 on IR-induced intestinal damage and explored the possible mechanisms. MATERIALS AND METHODS: IEC-6 cells were administrated with Fer-1 for 30 min and subsequently subjected to 9.0 Gy-irradiation. Flow cytometry, qPCR, and WB were used to detect changes. For in vivo experiments, Fer-1 was given intraperitoneally to mice at 1 h before and 24 h after 9.0 Gy total body irradiation (TBI) respectively. Three days after TBI, the small intestines were isolated for analysis. The diversity and composition of the gut microbiota were analyzed by 16S rRNA gene sequencing. RESULTS: In vitro, Fer-1 protected IEC-6 cells from IR injury by reducing the production of ROS and inhibiting both ferroptosis and apoptosis. In vivo, Fer-1 enhanced the survival rates of mice subjected to lethal doses of IR and restored intestinal structure and physiological function. Further investigation showed that Fer-1 protected IEC-6 cells and mice by inhibiting the p53-mediated apoptosis signaling pathway and restoring the gut-microbe balance. CONCLUSION: This study confirms that Fer-1 protects intestinal injuries through suppressing apoptosis and ferroptosis.


Ferroptosis , Animals , Mice , RNA, Ribosomal, 16S , Apoptosis/radiation effects , Radiation, Ionizing
9.
Theranostics ; 13(2): 596-610, 2023.
Article En | MEDLINE | ID: mdl-36632223

Rationale: Prostate cancer metastasizes to the bone with the highest frequency and exhibits high resistance to 177Lu-prostate-specific membrane antigen (PSMA) radioligand therapy. Little is known about bone metastatic prostate cancer (mPCa) resistance to radiation. Methods: We filtered the metastatic eRNA using RNA-seq, MeRIP-seq, RT-qPCR and bioinformation. Western blot, RT-qPCR, CLIP, co-IP and RNA pull-down assays were used for RNA/protein interaction, RNA or protein expression examination. MTS assay was used to determine cell viability in vitro, xenograft assay was used to examine the tumor growth in mice. Results: In this study, we screened and identified bone-specific N6 adenosine methylation (m6A) on enhancer RNA (eRNA) that played a post-transcriptional functional role in bone mPCa and was correlated with radiotherapy (RT) resistance. Further data demonstrated that RNA-binding protein KHSRP recognized both m6A at eRNA and m6Am at 5'-UTR of mRNA to block RNA degradation from exoribonuclease XRN2. Depletion of the MLXIPe/KHSRP/PSMD9 regulatory complex inhibited tumor growth and RT sensitization of bone mPCa xenograft in vitro and in vivo. Conclusions: Our findings indicate that a bone-specific m6A-modified eRNA plays a vital role in regulating mPCa progression and RT resistance and might be a novel specific predictor for cancer RT.


Bone Neoplasms , Prostatic Neoplasms , RNA , Radiation Tolerance , Animals , Humans , Male , Mice , Bone Neoplasms/genetics , Bone Neoplasms/radiotherapy , Bone Neoplasms/secondary , Methylation , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology
10.
Exp Mol Med ; 55(1): 55-68, 2023 01.
Article En | MEDLINE | ID: mdl-36599931

Gut microbial preparations are widely used in treating intestinal diseases but show mixed success. In this study, we found that the therapeutic efficacy of A. muciniphila for dextran sodium sulfate (DSS)-induced colitis as well as intestinal radiation toxicity was ~50%, and mice experiencing a positive prognosis harbored a high frequency of A. muciniphila in the gastrointestinal (GI) tract. Stable GI colonization of A. muciniphila elicited more profound shifts in the gut microbial community structure of hosts. Coexisting with A. muciniphila facilitated proliferation and reprogrammed the gene expression profile of Lactobacillus murinus, a classic probiotic that overtly responded to A. muciniphila addition in a time-dependent manner. Then, a magnetic-drove, mannose-loaded nanophase material was designed and linked to the surface of A. muciniphila. The modified A. muciniphila exhibited enhancements in inflammation targeting and intestinal colonization under an external magnetic field, elevating the positive-response rate and therapeutic efficacy against intestinal diseases. However, the unlinked cocktail containing A. muciniphila and the delivery system only induced negligible improvement of therapeutic efficacy. Importantly, heat-inactivated A. muciniphila lost therapeutic effects on DSS-induced colitis and was even retained in the GI tract for a long time. Further investigations revealed that the modified A. muciniphila was able to drive M2 macrophage polarization by upregulating the protein level of IL-4 at inflammatory loci. Together, our findings demonstrate that stable colonization of live A. muciniphila at lesion sites is essential for its anti-inflammatory function.


Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Animals , Mice , Gastrointestinal Microbiome/physiology , Verrucomicrobia/metabolism , Colitis/chemically induced
11.
Mol Biol Rep ; 50(2): 1829-1843, 2023 Feb.
Article En | MEDLINE | ID: mdl-36507968

Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.


DNA Damage , DNA Repair , Neoplasms , RNA, Long Noncoding , Radiation Injuries , Radiation Tolerance , Humans , DNA Damage/genetics , DNA Damage/radiation effects , DNA Repair/genetics , DNA Repair/radiation effects , Neoplasms/genetics , Neoplasms/radiotherapy , Neoplasms/metabolism , Radiation Tolerance/genetics , Radiation Tolerance/radiation effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Radiotherapy/adverse effects , Radiation Injuries/complications , Radiation Injuries/genetics
12.
Environ Pollut ; 316(Pt 2): 120424, 2023 Jan 01.
Article En | MEDLINE | ID: mdl-36272602

The major health risks of dual exposure to two hazardous factors of plastics and radioactive contamination are obscure. In the present study, we systematically evaluated the combinational toxic effects of tetrabromobisphenol A (TBBPA), one of the most influential plastic ingredients, mainly from electronic wastes, and γ-irradiation in zebrafish for the first time. TBBPA (0.25 µg/mL for embryos and larvae, 300 µg/L for adults) contamination aggravated the radiation (6 Gy for embryos and larvae, 20 Gy for adults)-induced early dysplasia and aberrant angiogenesis of embryos, further impaired the locomotor vitality of irradiated larvae, and worsened the radioactive multiorganic histologic injury, neurobehavioural disturbances and dysgenesis of zebrafish adults as well as the inter-generational neurotoxicity in offspring. TBBPA exaggerated the radiative toxic effects not only by enhancing the inflammatory and apoptotic response but also by further unbalancing the endocrine system and disrupting the underlying gene expression profiles. In conclusion, TBBPA exacerbates radiation-induced injury in zebrafish, including embryos, larvae, adults and even the next generation. Our findings provide new insights into the toxicology of TBBPA and γ-irradiation, shedding light on the severity of cocontamination of MP components and radioactive substances and thereby inspiring novel remediation and rehabilitation strategies for radiation-injured aqueous organisms and radiotherapy patients.


Flame Retardants , Polybrominated Biphenyls , Animals , Zebrafish/metabolism , Embryo, Nonmammalian , Flame Retardants/toxicity , Flame Retardants/metabolism , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Larva
13.
Animal Model Exp Med ; 5(6): 565-574, 2022 12.
Article En | MEDLINE | ID: mdl-36376997

BACKGROUND: Gastrointestinal (GI) injury is one of the most common side effects of radiotherapy. However, there is no ideal therapy method except for symptomatic treatment in the clinic. Xuebijing (XBJ) is a traditional Chinese medicine, used to treat sepsis by injection. In this study, the protective effects of XBJ on radiation-induced intestinal injury (RIII) and its mechanism were explored. METHODS: The effect of XBJ on survival of irradiated C57BL/6 mice was monitored. Histological changes including the number of crypts and the length of villi were evaluated by H&E. The expression of Lgr5+ intestinal stem cells (ISCs), Ki67+ cells, villin and lysozymes were examined by immunohistochemistry. The expression of cytokines in the intestinal crypt was detected by RT-PCR. DNA damage and apoptosis rates in the small intestine were also evaluated by immunofluorescence. RESULTS: In the present study, XBJ improved the survival rate of the mice after 8.0 and 9.0 Gy total body irradiation (TBI). XBJ attenuated structural damage of the small intestine, maintained regenerative ability and promoted proliferation and differentiation of crypt cells, decreased apoptosis rate and reduced DNA damage in the intestine. Elevation of IL-6 and TNF-α was limited, but IL-1, TNF-𝛽 and IL-10 levels were increased in XBJ-treated group after irradiation. The expression of Bax and p53 were decreased after XBJ treatment. CONCLUSIONS: Taken together, XBJ provides a protective effect on RIII by inhibiting inflammation and blocking p53-related apoptosis pathway.


Drugs, Chinese Herbal , Tumor Suppressor Protein p53 , Mice , Animals , Tumor Suppressor Protein p53/metabolism , Mice, Inbred C57BL , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Cytokines/metabolism
14.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article En | MEDLINE | ID: mdl-36361976

Social hierarchy governs the physiological and biochemical behaviors of animals. Intestinal radiation injuries are common complications connected with radiotherapy. However, it remains unclear whether social hierarchy impacts the development of radiation-induced intestinal toxicity. Dominant mice exhibited more serious intestinal toxicity following total abdominal irradiation compared with their subordinate counterparts, as judged by higher inflammatory status and lower epithelial integrity. Radiation-elicited changes in gut microbiota varied between dominant and subordinate mice, being more overt in mice of higher status. Deletion of gut microbes by using an antibiotic cocktail or restructuring of the gut microecology of dominant mice by using fecal microbiome from their subordinate companions erased the difference in radiogenic intestinal injuries. Lactobacillus murinus and Akkermansia muciniphila were both found to be potential probiotics for use against radiation toxicity in mouse models without social hierarchy. However, only Akkermansia muciniphila showed stable colonization in the digestive tracts of dominant mice, and significantly mitigated their intestinal radiation injuries. Our findings demonstrate that social hierarchy impacts the development of radiation-induced intestinal injuries, in a manner dependent on gut microbiota. The results also suggest that the gut microhabitats of hosts determine the colonization and efficacy of foreign probiotics. Thus, screening suitable microbial preparations based on the gut microecology of patients might be necessary in clinical application.


Gastrointestinal Microbiome , Probiotics , Radiation Injuries , Mice , Animals , Gastrointestinal Microbiome/physiology , Hierarchy, Social , Probiotics/pharmacology , Verrucomicrobia/physiology , Mice, Inbred C57BL
15.
J Radiat Res ; 63(6): 805-816, 2022 Dec 06.
Article En | MEDLINE | ID: mdl-36253108

This article aims to investigate the protection of the intestine from ionizing radiation-induced injury by using D-galactose (D-gal) to alter the gut microbiome. In addition, this observation opens up further lines of research to further increase therapeutic potentials. Male C57BL/6 mice were exposed to 7.5 Gy of total body irradiation (TBI) or 13 Gy of total abdominal irradiation (TAI) in this study. After adjustment, D-gal was intraperitoneally injected into mice at a dose of 750 mg/kg/day. Survival rates, body weights, histological experiments and the level of the inflammatory factor IL-1ß were observed after TBI to investigate radiation injury in mice. Feces were collected from mice for 16S high-throughput sequencing after TAI. Furthermore, fecal microorganism transplantation (FMT) was performed to confirm the effect of D-gal on radiation injury recovery. Intraperitoneally administered D-gal significantly increased the survival of irradiated mice by altering the gut microbiota structure. Furthermore, the fecal microbiota transplanted from D-gal-treated mice protected against radiation injury and improved the survival rate of recipient mice. Taken together, D-gal accelerates gut recovery following radiation injury by promoting the growth of specific microorganisms, especially those in the class Erysipelotrichia. The study discovered that D-gal-induced changes in the microbiota protect against radiation-induced intestinal injury. Erysipelotrichia and its metabolites are a promising therapeutic option for post-radiation intestinal regeneration.


Galactose , Radiation Injuries , Male , Mice , Animals , Mice, Inbred C57BL , Radiation, Ionizing
16.
Biomolecules ; 12(6)2022 06 12.
Article En | MEDLINE | ID: mdl-35740946

Antibodies have become an important class of biological products in cancer treatments such as radiotherapy. The growing therapeutic applications have driven a demand for high-purity antibodies. Affinity chromatography with a high affinity and specificity has always been utilized to separate antibodies from complex mixtures. Quality chromatographic components (matrices and affinity ligands) have either been found or generated to increase the purity and yield of antibodies. More importantly, some matrices (mainly particles) and affinity ligands (including design protocols) for antibody purification can act as radiosensitizers or carriers for therapeutic radionuclides (or for radiosensitizers) either directly or indirectly to improve the therapeutic efficiency of radiotherapy. This paper provides a brief overview on the matrices and ligands used in affinity chromatography that are involved in antibody purification and emphasizes their applications in radiotherapy to enrich potential approaches for improving the efficacy of radiotherapy.


Antibodies , Antibodies/chemistry , Antibodies/therapeutic use , Chromatography, Affinity/methods , Ligands
17.
J Cell Mol Med ; 26(11): 3269-3280, 2022 06.
Article En | MEDLINE | ID: mdl-35510614

Pulmonary fibrosis (PF) is a progressive interstitial lung disease with limited treatment options. The incidence and prevalence of PF is increasing with age, cell senescence has been proposed as a pathogenic driver, the clearance of senescent cells could improve lung function in PF. FOXO4-D-Retro-Inverso (FOXO4-DRI), a synthesis peptide, has been reported to selectively kill senescent cells in aged mice. However, it remains unknown if FOXO4-DRI could clear senescent cells in PF and reverse this disease. In this study, we explored the effect of FOXO4-DRI on bleomycin (BLM)-induced PF mouse model. We found that similar as the approved medication Pirfenidone, FOXO4-DRI decreased senescent cells, downregulated the expression of senescence-associated secretory phenotype (SASP) and attenuated BLM-induced morphological changes and collagen deposition. Furthermore, FOXO4-DRI could increase the percentage of type 2 alveolar epithelial cells (AEC2) and fibroblasts, and decrease the myofibroblasts in bleomycin (BLM)-induced PF mouse model. Compared with mouse and human lung fibroblast cell lines, FOXO4-DRI is inclined to kill TGF-ß-induced myofibroblast in vitro. The inhibited effect of FOXO4-DRI on myofibroblast lead to a downregulation of extracellular matrix (ECM) receptor interaction pathway in BLM-induced PF. Above all, FOXO4-DRI ameliorates BLM-induced PF in mouse and may be served as a viable therapeutic option for PF.


Pulmonary Fibrosis , Animals , Bleomycin/adverse effects , Cell Cycle Proteins/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Forkhead Transcription Factors/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism
18.
Int J Nanomedicine ; 17: 1381-1395, 2022.
Article En | MEDLINE | ID: mdl-35369034

Background: Hepatocellular carcinoma (HCC), arising from hepatocytes, is the most common primary liver cancer. It is urgent to develop novel therapeutic approaches to improve the grim prognosis of advanced HCC. 10-hydroxycamptothecin (HCPT) has good antitumor activity in cells; however, its hydrophobicity limits its application in the chemotherapy of HCC. Recently, nanoscale porphyrin metal-organic frameworks have been used as drug carriers due to their low biotoxicity and photodynamic properties. Methods: Nanoscale zirconium porphyrin metal-organic frameworks (NMOFs) were coated with arginine-glycine-aspartic acid (RGD) peptide to prepare NMOFs-RGD first. The HepG2 cell line, zebrafish embryos and larvae were used to test the biotoxicity and fluorescence imaging capability of NMOFs-RGD both in vitro and in vivo. Then, NMOFs were used as the skeleton, HCPT was assembled into the pores of NMOFs, while RGD peptide was wrapped around to synthesize a novel kind of nanocomposites, HCPT@NMOFs-RGD. The tissue distribution and chemo- and photodynamic therapeutic effects of HCPT@NMOFs-RGD were evaluated in a doxycycline-induced zebrafish HCC model and xenograft mouse model. Results: NMOFs-RGD had low biotoxicity, good biocompatibility and excellent imaging capability. In HCC-bearing zebrafish, HCPT@NMOFs-RGD were specifically enriched in the tumor by binding specifically to integrin αvß3 and led to a reduction in tumor volume. Moreover, the xenografts in mice were eliminated remarkably following HCPT@NMOFs-RGD treatment with laser irradiation, while little morphological change was found in other main organs. Conclusion: The nanocomposites HCPT@NMOFs-RGD accomplish tumor targeting and play synergistic chemo- and photodynamic therapeutic effects on HCC, offering a novel imaging-guided drug delivery and theranostic platform.


Carcinoma, Hepatocellular , Liver Neoplasms , Nanocomposites , Photochemotherapy , Animals , Camptothecin/analogs & derivatives , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Mice , Oligopeptides , Zebrafish
19.
Thorac Cancer ; 13(9): 1361-1368, 2022 05.
Article En | MEDLINE | ID: mdl-35429143

BACKGROUND: Radiotherapy is an effective therapeutic approach widely used clinically in non-small cell lung cancer (NSCLC), but radioresistance remains a major challenge. New and effective radiosensitizing approaches are thus urgently needed. The activation of DNA-sensing cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has become an attractive therapeutic target, but the relationship between activation of cGAS-STING pathway and radiosensitization of NSCLC cells remains unknown. METHODS: Considering low expression of cGAS-STING pathway genes in NSCLC, including STING, we used an activator (STING agonist, dimeric amidobenzimidazole [diABZI]) of cGAS-STING pathway and increased activation factor (DNA double strand breaks) of cGAS-STING pathway to respectively reinforce the activation of cGAS-STING pathway in NSCLC cells. We then investigated the effect of increased activation of cGAS-STING pathway on the proliferation of H460 and A549 cells by CCK-8 and colony formation assays, and revealed the underlying mechanism. RESULTS: We found that both diABZI and the increased DNA double strand breaks could sensitize NSCLC cells to irradiation. Mechanically, our results showed that the increased activation of cGAS-STING pathway enhanced radiosensitivity by promoting apoptosis in NSCLC cells. CONCLUSION: Taken together, we concluded that diABZI could be used as a radiosensitizer in NSCLC cells, and targeting the activation of cGAS-STING pathway has a potential to be a new approach for NSCLC radiosensitizing.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/radiotherapy , DNA/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Radiation Tolerance , Signal Transduction
20.
Thorac Cancer ; 13(10): 1441-1448, 2022 05.
Article En | MEDLINE | ID: mdl-35388633

BACKGROUND: To identify radio-responsive genes and explore the biological function of encoded proteins in non-small cell lung cancer (NSCLC). METHODS: Radio-responsive genes in irradiated H460 cells were screened from microarray data deposited in the Gene Expression Omnibus (GEO) database. A quantitative real time polymerase chain reaction assay was used to detect the expression of candidate radio-responsive genes in irradiated cells. CCK-8 assay, EDU assay, clone formation assay, immunofluorescence and flow cytometry were conducted to evaluate the biological function of B cell translocation gene 2 (BTG2) in NSCLC. RESULTS: Bioinformatic analysis using GES20549 showed that BTG2 was a radio-responsive gene in irradiated H460 cells. The mRNA expression level of BTG2 was lower in H460 cells compared with that in BEAS-2B normal lung epithelial cells. BTG2 expression was elevated upon IR exposure, in a dose-dependent but not a time-dependent manner. CCK-8 and EDU assays revealed that BTG2 overexpression inhibited the growth rate of irradiated cells. Clone formation showed that elevated BTG2 promoted DNA damage of irradiated H460 cells. The number of γ-H2AX foci induced by DNA damage was also markedly increased upon BTG2 overexpression. Flow cytometry showed that BTG2 increased IR-induced cell apoptosis. CONCLUSIONS: BTG2 may be a novel radio-responsive factor and a promising therapeutic target for radiotherapy of NSCLC.


Carcinoma, Non-Small-Cell Lung , Immediate-Early Proteins , Lung Neoplasms , Tumor Suppressor Proteins , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/radiotherapy , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy , Radiation Tolerance/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
...