Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Diabetologia ; 67(4): 738-754, 2024 Apr.
Article En | MEDLINE | ID: mdl-38236410

AIMS/HYPOTHESIS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS: Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS: Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION: In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.


Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Humans , Female , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Metabolic Reprogramming , AMP-Activated Protein Kinases/metabolism , Sodium-Glucose Transporter 2/metabolism , Estivation , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Kidney/metabolism , Fasting , TOR Serine-Threonine Kinases/metabolism , Glycine/metabolism , Mammals/metabolism
2.
Mol Cell Endocrinol ; 582: 112139, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38128823

Impaired fatty acid oxidation (FAO) is a metabolic hallmark of renal tubular epithelial cells (RTECs) under diabetic conditions. Disturbed FAO may promote cellular oxidative stress and insufficient energy production, leading to ferroptosis subsequently. Canagliflozin, an effective anti-hyperglycemic drug, may exert potential reno-protective effects by upregulating FAO and inhibiting ferroptosis in RTECs. However, the mechanisms involved remain unclear. The present study is aimed to characterize the detailed mechanisms underlying the impact of canagliflozin on FAO and ferroptosis. Type 2 diabetic db/db mice were administrated daily by gavage with canagliflozin (20 mg/kg/day, 40 mg/kg/day) or positive control drug pioglitazone (10 mg/kg/day) for 12 weeks. The results showed canagliflozin effectively improved renal function and structure, reduced lipid droplet accumulation, enhanced FAO with increased ATP contents and CPT1A expression, a rate-limiting enzyme of FAO, and relieved ferroptosis in diabetic mice. Moreover, overexpression of FOXA1, a transcription factor related with lipid metabolism, was observed to upregulate the level of CPT1A, and further alleviated ferroptosis in high glucose cultured HK-2 cells. Whereas FOXA1 knockdown had the opposite effect. Mechanistically, chromatin immunoprecipitation assay and dual-luciferase reporter gene assay results demonstrated that FOXA1 transcriptionally promoted the expression of CPT1A through a sis-inducible element located in the promoter region of the protein. In conclusion, these data suggest that canagliflozin improves FAO and attenuates ferroptosis of RTECs via FOXA1-CPT1A axis in diabetic kidney disease.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Ferroptosis , Mice , Animals , Canagliflozin/pharmacology , Canagliflozin/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetes Mellitus, Experimental/metabolism , Epithelial Cells/metabolism , Lipid Metabolism , Fatty Acids/metabolism
3.
Eur J Pharmacol ; 958: 176042, 2023 Nov 05.
Article En | MEDLINE | ID: mdl-37660971

Mitophagy, a mechanism of self-protection against oxidative stress, plays a critical role in podocyte injury caused by diabetic kidney disease (DKD). Sulforaphane (SFN), an isothiocyanate compound, is a potent antioxidant that affords protection against diabetes mellitus-mediated podocyte injury. However, its role and underlying mechanism in DKD especially in diabetic podocytopathy is not clearly defined. In the current study, we demonstrated SFN remarkably activated mitophagy in podocytes, restored urine albumin to creatinine ration, and prevented the glomerular hypertrophy and extensive foot process fusion in diabetic mice. Simultaneously, nephroprotective effects of SFN on kidney injury were abolished in podocyte-specific Nuclear factor erythroid 2-related factor 2 (Nrf2) conditional knockout mouse (cKO), indicating that SFN alleviating DM-induced podocyte injury dependent on Nrf2. In vitro study, supplement with SFN augmented the expression of PTEN induced kinase 1(PINK1) and mediated the activation of mitophagy in podocytes treated with high glucose. Further study revealed that SFN treatment enabled Nrf2 translocate into nuclear and bind to the specific site of PINK1 promoter, ultimately reinforcing the transcription of PINK1. Moreover, SFN failed to confer protection to podocytes treated with high glucose in presence of PINK1 knockdown. On the contrary, exogenous overexpression of PINK1 reversed mitochondrial abnormalities in Nrf2 cKO diabetic mice. In conclusion, SFN alleviated podocyte injury in DKD through activating Nrf2/PINK1 signaling pathway and balancing mitophagy, thus maintaining the mitochondrial homeostasis.

4.
FASEB J ; 37(6): e22938, 2023 06.
Article En | MEDLINE | ID: mdl-37130011

Diabetic kidney disease (DKD) develops in ~40% of patients with diabetes and is the leading cause of chronic kidney disease worldwide. We used single-cell RNA-sequencing and spatial transcriptomic analyses of kidney specimens from patients with DKD. Unsupervised clustering revealed distinct cell clusters, including epithelial cells and fibroblasts. We also identified differentially expressed genes (DEGs) and assessed enrichment, and cell-cell interactions. Specific enrichment of DKD was evident in venous endothelial cells (VECs) and fibroblasts with elevated CCL19 expression. The DEGs in most kidney parenchymal cells in DKD were primarily enriched in inflammatory signaling pathways. Intercellular crosstalk revealed that most cell interactions in DKD are associated with chemokines. Spatial transcriptomics revealed that VECs co-localized with fibroblasts, with most immune cells being enriched in areas of renal fibrosis. These results provided insight into the cell populations, intercellular interactions, and signaling pathways underlying the pathogenesis and potential targets for treating DKD.


Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Transcriptome , Single-Cell Gene Expression Analysis , Kidney/metabolism , Diabetes Mellitus/metabolism
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166685, 2023 06.
Article En | MEDLINE | ID: mdl-36889557

There is increasing evidence that the crosstalk between podocytes and glomerular endothelial cells (GECs) exacerbates the progression of diabetic kidney disease (DKD). Here, we investigated the underlying role of SUMO specific peptidase 6 (SENP6) in this crosstalk. In the diabetic mice, SENP6 was decreased in glomerular tissues and its knockdown further exacerbated glomerular filtration barrier injury. In the mouse podocyte cell line MPC5 cells, SENP6 overexpression reversed HG-induced podocyte loss by suppressing the activation of Notch1 signaling. Notch1 intracellular domain (N1ICD) is the active form of Notch1. SENP6 upregulated the ubiquitination of N1ICD by deSUMOylating Notch1, thereby reducing N1ICD and suppressing Notch1 signaling activation in MPC5 cells. Endothelin-1 (EDN1) is a protein produced by podocytes and has been reported to promote GEC dysfunction. The supernatant from HG-treated MPC5 cells induced mitochondrial dysfunction and surface layer injury in GECs, and the supernatant from SENP6-deficient podocytes further exacerbated the above GEC dysfunction, while this trend was reversed by an EDN1 antagonist. The following mechanism study showed that SENP6 deSUMOylated KDM6A (a histone lysine demethylase) and then decreased the binding potency of KDM6A to EDN1. The latter led to the upregulation of H3K27me2 or H3K27me3 of EDN1 and suppressed its expression in podocytes. Taken together, SENP6 suppressed the HG-induced podocyte loss and ameliorated GEC dysfunction caused by crosstalk between podocytes and GECs, and the protective effect of SENP6 on DKD is attributed to its deSUMOylation activity.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Mice , Animals , Podocytes/metabolism , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Diabetes Mellitus, Experimental/metabolism , Histone Demethylases/metabolism , Peptide Hydrolases/metabolism
6.
Phytomedicine ; 111: 154656, 2023 Mar.
Article En | MEDLINE | ID: mdl-36682300

BACKGROUD: Bidirectional communications between the gut microbiota and the brain may play a critical role in diabetes-related cognitive impairment. Compound Danshen Dripping Pills (CDDP) treatment has shown remarkable improvement in cognitive impairment in people with type 2 diabetes mellitus (T2DM) in clinical settings, but the underlying mechanisms remain unknown. PURPOSE: An extensive detailed strategy via in vivo functional experiments, transcriptomics, metabolomics, and network pharmacology was adopted to investigate the CDDP-treatment mechanism in diabetic cognitive dysfunction. METHODS: For 12 weeks, KK-Ay mice, a spontaneous T2DM model, were intragastrically administered various doses of CDDP solution or an equivalent volume of water, and the nootropic drug piracetam was orally administered as a positive control. At the 12th week, cognition was assessed using Morris water maze tests and brain magnetic resonance imaging (MRI). Furthermore, transcriptomics, metabolomics, and network pharmacology analyses were applied to reveal novel molecular mechanisms of CDDP-treatment in diabetic cognitive dysfunction of KK-Ay mice, which were then validated using quantitative real-time polymerase chain reaction and Western blot. RESULTS: Here we verified that CDDP can suppress inflammatory response and alleviate the cognitive dysfunction in KK-Ay mice. Also, as demonstrated by 16S rRNA sequencing and short-chain fatty acids (SCFAs) analysis, CDDP attenuated intestinal flora disorder as well as increases of metabolites including butyric acid, hexanoic acid, and isohexic acid. Given the integrated analyses of network pharmacology, transcriptomic, metabolomic data, and molecular biology, the TLR4/MyD88/NF-κB signaling pathway was activated in diabetes, which could be reversed by CDDP. CONCLUSIONS: Our findings demonstrate that CDDP restructures the gut microbiota composition and increased the intestinal SCFAs in KK-Ay mice, which might inhibit neuroinflammation, and thus improve diabetic mice cognitive disorder.


Cognitive Dysfunction , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , RNA, Ribosomal, 16S , Cognitive Dysfunction/drug therapy , Signal Transduction , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
7.
Cell Prolif ; 56(2): e13349, 2023 Feb.
Article En | MEDLINE | ID: mdl-36316968

OBJECTIVES: Elevated thioredoxin-interacting protein (TXNIP)-induced pyroptosis contributes to the pathology of diabetic kidney disease (DKD). However, the molecular mechanisms in dysregulated TXNIP in DKD remain largely unclear. MATERIALS AND METHODS: Transcriptomic analysis identified a novel long noncoding RNA-Prader Willi/Angelman region RNA, SNRPN neighbour (PWARSN)-which was highly expressed in a proximal tubular epithelial cell (PTEC) under high glucose conditions. We focused on revealing the functions of PWARSN in regulating TXNIP-mediated pyroptosis in PTECs by targeting PWARSN expression via lentivirus-mediated overexpression and CRISPR-Cas9-based knockout in vitro and overexpressing PWARSN in the renal cortex by AAV-9 targeted injection in vivo. A number of molecular techniques disclosed the mechanisms of PWARSN in regulating TXNIP induced-pyroptosis in DKD. RESULTS: TXNIP-NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and PTEC pyroptosis were activated in the renal tubules of patients with DKD and in diabetic mice. Then we explored that PWARSN enhanced TXNIP-driven PTECs pyroptosis in vitro and in vivo. Mechanistically, cytoplasmic PWARSN sponged miR-372-3p to promote TXNIP expression. Moreover, nuclear PWARSN interacted and facilitated RNA binding motif protein X-linked (RBMX) degradation through ubiquitination, resulting in the initiation of TXNIP transcription by reducing H3K9me3-enrichment at the TXNIP promoter. Further analysis indicated that PWARSN might be a potential biomarker for DKD. CONCLUSIONS: These findings illustrate distinct dual molecular mechanisms for PWARSN-modulated TXNIP and PTECs pyroptosis in DKD, presenting PWARSN as a promising therapeutic target for DKD.


Diabetes Mellitus, Experimental , Diabetic Nephropathies , MicroRNAs , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , snRNP Core Proteins , Pyroptosis/genetics , Diabetes Mellitus, Experimental/genetics , MicroRNAs/genetics , Epithelial Cells/metabolism , Carrier Proteins/genetics , Thioredoxins/genetics , Thioredoxins/metabolism
8.
Front Microbiol ; 13: 911992, 2022.
Article En | MEDLINE | ID: mdl-35847083

Objective: The purpose of this study was to elucidate the characteristics of the gut microbiome in patients with Polycystic ovary syndrome (PCOS) and analyze the alterations of fecal fatty acid metabolism, so as to further provide the pathogenesis of PCOS. Methods: Fecal samples from the PCOS group (n = 31) and healthy control group (n = 27) were analyzed by 16S rRNA gene sequencing and untargeted metabolomics. Peripheral venous blood was collected to measure serum inflammation and intestinal permeability. Finally, the correlation analysis of intestinal flora, fecal metabolites, and laboratory indicators was carried out. Results: Serum D-lactate content in the PCOS group was higher than that in the control group. There was no significant difference in microbial α diversity and ß diversity between PCOS patients and healthy controls. Peptostreptococcaceae and Bacteroidales S24-7 group existed significant differences between PCOS patients and healthy controls. Based on linear discriminant analysis selection, 14 genera including Klebsiella, Enterobacteriaceae, and Gammaproteobacteria were dominant in patients with PCOS, while 4 genera, including rumenococcus (Ruminocaccaceae UCG 013), prewortella (Prevotellaceae UCG 001), and erysipelas (Erysipelatoclostridium), were dominant in healthy controls. Compared with PCOS with Body mass index (BMI) < 24, patients with BMI ≥ 24 have multiple dominant genera including Abiotrophia and Peptostreptococcaceae. Moreover, serum levels of free testosterone and androstenedione were positively correlated with Megamonas, while total testosterone was negatively correlated with Alistipes. Additionally, fecal contents of acetic acid and propionic acid in patients with PCOS were significantly higher than those in healthy controls. Eubacterium_coprostanoligenes_group and Alistipes were positively correlated with 6 kinds of fatty acids. Conclusion: Specific intestinal flora fecal fatty acids and serum metabolites may mediate the occurrence and development of PCOS. PCOS patients with different body sizes have specific intestinal flora.

9.
Bioengineered ; 13(2): 3911-3929, 2022 02.
Article En | MEDLINE | ID: mdl-35129424

Diabetic kidney disease (DKD) is a serious diabetes complication. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel anti-diabetes drugs that confer clinical renal protection. However, the molecular mechanisms involved remain unclear. Here, human proximal tubular epithelial cells (PTECs) were treated with normal glucose, high glucose, and anti-diabetes agents, including SGLT2i (dapagliflozin), metformin, and dipeptidyl peptidase-4 inhibitor (DPP-4i, vildagliptin) and microarray analysis was performed. Firstly, a total of 2,710 differentially expressed circular RNAs (circRNAs) were identified. Secondly, network pharmacology and transcriptomics analyses showed that the effects of dapagliflozin on PTECs primarily involved lipid metabolism, Rap1, and MAPK signaling pathways. Metformin mainly affected the AMPK and FOXO signaling pathways, whereas vildagliptin affected insulin secretion and the HIF-1 signaling pathway. Furthermore, circRNA-miRNA-mRNA networks, real-time reverse transcription-polymerase chain reaction (RT-PCR), and fluorescence in situ hybridization (FISH) assay revealed that the expression of hsa_circRNA_012448 was increased in PTECs treated with high glucose, whereas its expression was reversed by dapagliflozin. Finally, the hsa_circRNA_012448-hsa-miR-29b-2-5p-GSK3ß pathway, involved in the oxidative stress response, was identified as an important pathway mediating the action of dapagliflozin against DKD. Overall, our study provides novel insights into the molecular mechanisms underlying the effects of dapagliflozin on DKD.


Diabetes Mellitus , Diabetic Nephropathies , Metformin , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Benzhydryl Compounds , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Epithelial Cells/metabolism , Glucose/metabolism , Glucosides , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , In Situ Hybridization, Fluorescence , Metformin/therapeutic use , MicroRNAs , RNA, Circular/genetics , Sodium/therapeutic use , Vildagliptin/therapeutic use
10.
Eur J Pharmacol ; 911: 174552, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34627808

Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus for which there is still no effective treatment. We previously showed that upregulation of thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (TRX), accelerates the progression of DKD. In this study, we hypothesized whether verapamil, a calcium channel blocker and an established TXNIP inhibitor, might exert a renal-protective effect on DKD by regulating TXNIP expression. Herein, a systemic pharmacological network study was performed and multiple molecules and pathways targeted by verapamil on DKD were characterized. Furthermore, diabetic mice were induced by streptozotocin (STZ), and verapamil (100 mg/kg/day) or saline was intraperitoneally injected into the mice. After 16 weeks, mice were analyzed for blood glucose, blood pressure, and functional parameters followed by sacrifice and evaluation of renal tubular injury, alterations in TXNIP, apoptosis and fibrosis markers. Additionally, the effects of treatment with verapamil (50 µM, 100 µM, 150 µM) under high glucose conditions on the expression of TXNIP and signaling pathway components in proximal tubular epithelial cells (PTEC, HK-2 cells) were explored. According to these findings, we conclude that verapamil might serve as a potential agent for the prevention and treatment of DKD.


Verapamil
11.
Front Genet ; 11: 555865, 2020.
Article En | MEDLINE | ID: mdl-33329695

Background: The tumor microenvironment (TME) has been reported to have significant value in the diagnosis and prognosis of cancers. This study aimed to identify key biomarkers in the TME of luminal breast cancer (BC). Methods: We obtained immune scores (ISs) and stromal scores (SSs) for The Cancer Genome Atlas (TCGA) luminal BC cohort from the online ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) portal. The relationships between ISs and SSs and the overall survival of luminal BC patients were assessed by the Kaplan-Meier method. The differentially expressed messenger RNAs (DEmRNAs) related to the ISs and SSs were subjected to functional enrichment analysis. Additionally, a competing endogenous RNA (ceRNA) network was constructed with differentially expressed microRNAs (DEmiRNAs) and long noncoding RNAs (DElncRNAs). Furthermore, a protein-protein interaction (PPI) network was established to analyze the DEmRNAs in the ceRNA network. Then, survival analysis of biomarkers involved in the ceRNA network was carried out to explore their prognostic value. Finally, these biomarkers were validated using the luminal BC dataset from the Gene Expression Omnibus (GEO) database. Results: The results showed that ISs were significantly associated with longer survival times of luminal BC patients. Functional enrichment analysis showed that the DEmRNAs were mainly associated with immune response, antigen binding, and the extracellular region. In the PPI network, the top 10 DEmRNAs were identified as hub genes that affected the TME of luminal BC. Finally, two DEmiRNAs, two DElncRNAs, and 17 DEmRNAs of the ceRNA network associated with the TME were shown to have prognostic value. Subsequently, the expression of 15 prognostic biomarkers was validated in one additional dataset (GSE81002). In particular, one lncRNA (GVINP1) and five mRNAs (CCDC69, DOCK2, IKZF1, JCHAIN, and NCKAP1L) were novel biomarkers. Conclusions: Our studies demonstrated that ISs were associated with the survival of luminal BC patients, and a set of novel biomarkers that might play a prognostic role in the TME of luminal BC was identified.

...