Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Colloid Interface Sci ; 663: 697-706, 2024 Jun.
Article En | MEDLINE | ID: mdl-38432168

The unique superstructures electrode materials are of dominant significance for improving the performance of aqueous zinc-ion batteries (AZIBs). In this work, using nano MIL-96 (Al) as the precursor, a series of the layered (AlO)2OH·VO3 composite superstructures with different morphologies and V-oxide contents were prepared by combining calcination and hydrothermal synthesis. Among which, the HBC650·V4 superstructure is composed of the amorphous Al2O3/C, V-oxide, and the fluffy structure of (AlO)2OH, thus the superstructure can enhance the stability, increase the active center, and shorten Zn2+ diffusion, respectively. It is commendable that, the HBC650·V4 superstructure exhibits a high specific capacity of 180.1 mAh·g-1 after 300 cycles at 0.5 A·g-1. Furthermore, the capacity retention can be as high as 99.6 % after 5000 cycles at a high current density of 5.0 A·g-1, showing superior long cycling stability. Importantly, the in-situ XRD patterns and ex-situ analysis revealed the structural changes and reaction mechanisms of the HBC650·V4 superstructure during Zn2+ insertion/extraction. Therefore, the HBC650·V4 superstructure prepared using Al-MOF exhibits the advanced AZIBs performance. The preparation of nano-MOF into multifunctional superstructures through innovative strategies will be development trend in this field, which opens a new way to design AZIBs cathode materials.

...