Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Hellenic J Cardiol ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38460616

BACKGROUND: The safety and efficacy of a combined approach of catheter ablation (CA) and left atrial appendage occlusion (LAAO) compared to LAAO alone remain unknown. METHODS: Patients with atrial fibrillation (AF) at increased stroke risk who underwent LAAO were divided into either combined (CA and LAAO) procedures or LAAO alone group. Propensity score matching was utilized to balance baseline characteristics. The primary endpoint of the study was a composite of death, thromboembolic events, major bleeding, heart failure (HF) rehospitalization, and major periprocedural complications. RESULTS: A total of 707 AF patients who underwent LAAO were included. After 1:1 propensity score matching, 166 patients who underwent LAAO alone (n = 83) or the combined procedure (n = 83) were analyzed. Successful LAAO was achieved in all (100%) patients, with a low incidence of periprocedural complications in both groups (2.4% vs. 4.8%, LAAO vs. combined, p = 0.68). The incidence of peri-device leak post-LAAO was significantly higher in the combined group (25.3% vs. 43.4%, p = 0.01). After a median follow-up of 2 years, there were no significant differences in the rates of the primary composite endpoint between the two strategies (22.2% vs. 14.3%, HR: 1.24 [95% CI: 0.51-2.97], p = 0.63). However, the rate of HF rehospitalization was significantly lower in the combined group (19.6% vs. 3.6%, HR: 4.89 [95% CI: 1.50-15.97], p = 0.024). CONCLUSIONS: Combining CA and LAAO in a "one-stop" approach is safe and brings additional benefits in relieving symptoms of heart failure, although peri-device leak was more common compared to LAAO alone.

2.
Stem Cell Res Ther ; 15(1): 43, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38360659

BACKGROUND: Ischemia-reperfusion injury to the central nervous system often causes severe complications. The activation of endogenous neural stem cells (NSCs) is considered a promising therapeutic strategy for nerve repair. However, the specific biological processes and molecular mechanisms of NSC activation remain unclear, and the role of N6-methyladenosine (m6A) methylation modification in this process has not been explored. METHODS: NSCs were subjected to hypoxia/reoxygenation (H/R) to simulate ischemia-reperfusion in vivo. m6A RNA methylation quantitative kit was used to measure the total RNA m6A methylation level. Quantitative real-time PCR was used to detect methyltransferase and demethylase mRNA expression levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted for NSCs in control and H/R groups, and the sequencing results were analyzed using bioinformatics. Finally, the migration ability of NSCs was identified by wound healing assays, and the proliferative capacity of NSCs was assessed using the cell counting kit-8, EdU assays and cell spheroidization assays. RESULTS: Overall of m6A modification level and Mettl14 mRNA expression increased in NSCs after H/R treatment. The m6A methylation and expression profiles of mRNAs in NSCs after H/R are described for the first time. Through the joint analysis of MeRIP-seq and RNA-seq results, we verified the proliferation of NSCs after H/R, which was regulated by m6A methylation modification. Seven hub genes were identified to play key roles in the regulatory process. Knockdown of Mettl14 significantly inhibited the proliferation of NSCs. In addition, separate analysis of the MeRIP-seq results suggested that m6A methylation regulates cell migration and differentiation in ways other than affecting mRNA expression. Subsequent experiments confirmed the migration ability of NSCs was suppressed by knockdown of Mettl14. CONCLUSION: The biological behaviors of NSCs after H/R are closely related to m6A methylation of mRNAs, and Mettl14 was confirmed to be involved in cell proliferation and migration.


Hypoxia , Neural Stem Cells , Mice , Animals , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Differentiation/genetics , Hypoxia/metabolism
3.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Article En | MEDLINE | ID: mdl-38392920

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Anthocyanins , Arabidopsis Proteins , Cryptochromes , Gene Expression Regulation, Plant , Light , Populus , Wood , Populus/genetics , Populus/metabolism , Populus/growth & development , Cryptochromes/metabolism , Cryptochromes/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Wood/metabolism , Wood/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Xylem/metabolism , Xylem/genetics , Xylem/growth & development , Photoreceptors, Plant/metabolism , Photoreceptors, Plant/genetics , Blue Light
4.
Int J Biol Macromol ; 254(Pt 3): 128061, 2024 Jan.
Article En | MEDLINE | ID: mdl-37963499

Aflatoxin B1 (AFB1) is a typical mycotoxin that signifacntly endangers public health and economy. In this study, we systematically studied the interaction of aptamers with AFB1 using circular dichroism, molecular dynamics, molecular docking, and fluorescence analysis. The truncated sequence aptamers were screened using molecular docking. We successfully obtained the AFB1 aptamer with higher affinity and its truncated form was enhanced by 5.2-fold compared to the initial AFB1 aptamer. In addition, for rapid detection of AFB1, we designed a fluorescent nano-adaptor sensing platform using RecJf exonuclease signal amplification strategy based on the optimal aptamer. The aptasensor showed satisfactory sensitivity towards AFB1 with a linear detection range of 1-400 ng/mL and a detection limit of 0.57 ng/mL. The aptasensor was successfully applied to the determination of AFB1 in soybean oil and corn oil with recoveries of 91.02 %-106.59 % and 87.39 %-110.61 %, respectively. The successful application of the AFB1 aptasensor, developed through bioinformatics truncation of the aptamer, provides a novel approach to creating a cost-effective, eco-friendly, and rapid aptamer sensing platform.


Aptamers, Nucleotide , Biosensing Techniques , Aflatoxin B1/analysis , Molecular Docking Simulation , Limit of Detection , Fluorescent Dyes
5.
JACC Asia ; 3(4): 556-579, 2023 Aug.
Article En | MEDLINE | ID: mdl-37614546

Transcatheter structural heart intervention (TSHI) has gained popularity over the past decade as a means of cardiac intervention in patients with prohibitive surgical risks. Following the exponential rise in cases and devices developed over the period, there has been increased focus on developing the role of "structural imagers" amongst cardiologists. This review, as part of a growing initiative to develop the field of interventional echocardiography, aims to highlight the role of echocardiography in myriad TSHIs available within Asia. We first discuss the various echocardiography-based imaging modalities, including 3-dimensional echocardiography, fusion imaging, and intracardiac echocardiography. We then highlight a selected list of structural interventions available in the region-a combination of established interventions alongside novel approaches-describing key anatomic and pathologic characteristics related to the relevant structural heart diseases, before delving into various aspects of echocardiography imaging for each TSHI.

6.
EuroIntervention ; 19(8): 695-702, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37594402

BACKGROUND: The current risk stratification schemes for stroke in patients with atrial fibrillation (AF) are insufficient for an accurate assessment of stroke risk. AIMS: This study evaluates the association between the mechanical function of the left atrial appendage (LAA), as assessed by angiography, and the risk of stroke. METHODS: We conducted a cross-sectional study to assess the mechanical function of the LAA by measuring the left atrial appendage ejection fraction (LAAEF) and grading the contrast retention (CR) using angiography. RESULTS: A total of 746 patients referred for a left atrial appendage occlusion (LAAO) procedure with (n=151; stroke group) or without (n=595; control group) a history of stroke were included in the analysis. LAAEF was significantly lower (14% [9-19] vs 20% [12-33]; p<0.001) and grade 3 CR was more common (66.9% vs 33.9%; p<0.001) in patients with a history of stroke. Multivariable analysis showed that CR was independently associated with stroke in patients with AF (grade 2 vs grade 1=7.29; 95% confidence interval [CI]: 2.84-21.65; p<0.001; grade 3 vs grade 1=16.45; 95% CI: 6.16-51.02; p<0.001). The receiver operating characteristics curve demonstrated that CR identified patients with stroke more accurately than the CHA2D-VASc score (C-statistic 0.712 vs 0.512; p<0.001), and the combination of CR and the CHA2DS2-VASc score provided the best performance (C-statistic 0.871 vs 0.829 [CHA2DS2-VASc score alone]; p=0.048) Conclusions: Impaired mechanical function of the LAA, indicated by a low LAAEF and CR, is associated with a history of stroke in patients with AF. Assessment of CR using LAA angiography helps improve the stratification scheme for stroke risk prediction.


Atrial Appendage , Atrial Fibrillation , Stroke , Humans , Atrial Fibrillation/complications , Atrial Appendage/diagnostic imaging , Risk Factors , Cross-Sectional Studies , Echocardiography, Transesophageal/methods , Stroke/complications , Angiography
7.
Foods ; 12(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37569149

Aflatoxin B1 (AFB1) is one of the most contaminated fungal toxins worldwide and is prone to cause serious economic losses, food insecurity, and health hazards to humans. The rapid, on-site, and economical method for AFB1 detection is need of the day. In this study, an AFB1 aptamer (AFB1-Apt) sensing platform was established for the detection of AFB1. Fluorescent moiety (FAM)-modified aptamers were used for fluorescence response and quenching, based on the adsorption quenching function of single-walled carbon nanohorns (SWCNHs). Basically, in our constructed sensing platform, the AFB1 specifically binds to AFB1-Apt, making a stable complex. This complex with fluorophore resists to be adsorbed by SWCNHs, thus prevent SWCNHs from quenching of fluorscence, resulting in a fluorescence response. This designed sensing strategy was highly selective with a good linear response in the range of 10-100 ng/mL and a low detection limit of 4.1 ng/mL. The practicality of this sensing strategy was verified by using successful spiking experiments on real samples of soybean oil and comparison with the enzyme-linked immunosorbent assay (ELISA) method.

8.
Food Res Int ; 170: 113022, 2023 08.
Article En | MEDLINE | ID: mdl-37316026

Mycotoxin contamination in food products can easily cause serious health hazards and economic losses to human beings. How to accurately detect and effectively control mycotoxin contamination has become a global concern. Mycotoxins conventional detection techniques e.g; ELISA, HPLC, have limitations like, low sensitivity, high cost and time-consuming. Aptamer-based biosensing technology has the advantages of high sensitivity, high specificity, wide linear range, high feasibility, and non-destructiveness, which overcomes the shortcomings of conventional analysis techniques. This review summarizes the sequences of mycotoxin aptamers that have been reported so far. Based on the application of four classic POST-SELEX strategies, it also discusses the bioinformatics-assisted POST-SELEX technology in obtaining optimal aptamers. Furthermore, trends in the study of aptamer sequences and their binding mechanisms to targets is also discussed. The latest examples of aptasensor detection of mycotoxins are classified and summarized in detail. Newly developed dual-signal detection, dual-channel detection, multi-target detection and some types of single-signal detection combined with unique strategies or novel materials in recent years are focused. Finally, the challenges and prospects of aptamer sensors in the detection of mycotoxins are discussed. The development of aptamer biosensing technology provides a new approach with multiple advantages for on-site detection of mycotoxins. Although aptamer biosensing shows great development potential, still some challenges and difficulties are there in practical applications. Future research need high focus on the practical applications of aptasensors and the development of convenient and highly automated aptamers. This may lead to the transition of aptamer biosensing technology from laboratory to commercialization.


Computational Biology , Mycotoxins , Humans , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay
9.
FASEB J ; 37(2): e22760, 2023 02.
Article En | MEDLINE | ID: mdl-36607643

The activation of endogenous neural stem cells (NSCs) is considered an important mechanism of neural repair after mechanical spinal cord injury; however, whether endogenous NSC proliferation can also occur after spinal cord ischemia-reperfusion injury (SCIRI) remains unclear. In this study, we aimed to verify the existence of endogenous NSC proliferation after SCIRI and explore the underlying molecular mechanism. NSC proliferation was observed after SCIRI in vivo and oxygen-glucose deprivation and reperfusion (OGD/R) in vitro, accompanied by a decrease in forkhead box protein O 3a (FOXO3a) expression. This downward trend was regulated by the increased expression of microRNA-872-5p (miR-872-5p). miR-872-5p affected NSC proliferation by targeting FOXO3a to increase the expression of ß-catenin and T-cell factor 4 (TCF4). In addition, TCF4 in turn acted as a transcription factor to increase the expression level of miR-872-5p, and knockdown of FOXO3a enhanced the binding of TCF4 to the miR-872-5p promoter. In conclusion, SCIRI in vivo and OGD/R in vitro stimulated the miR-872-5p/FOXO3a/ß-catenin-TCF4 pathway, thereby promoting NSC proliferation. At the same time, FOXO3a affected TCF4 transcription factor activity and miR-872-5p expression, forming a positive feedback loop that promotes NSC proliferation.


MicroRNAs , Neural Stem Cells , Reperfusion Injury , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism , Neural Stem Cells/metabolism , Spinal Cord/metabolism , Oxygen/metabolism , Cell Proliferation , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Apoptosis
10.
Cell Mol Neurobiol ; 43(5): 1799-1816, 2023 Jul.
Article En | MEDLINE | ID: mdl-36308642

Normoxia is defined as an oxygen concentration of 20.9%, as in room air, whereas hypoxia refers to any oxygen concentration less than this. Any physiological oxygen deficiency or tissue oxygen deficiency relative to demand is called hypoxia. Neural stem cells (NSCs) are multipotent stem cells that can differentiate into multiple cell lines such as neurons, oligodendrocytes, and astrocytes. Under hypoxic conditions, the apoptosis rate of NSCs increases remarkably in vitro or in vivo. However, some hypoxia promotes the proliferation and differentiation of NSCs. The difference is related to the oxygen concentration, the duration of hypoxia, the hypoxia tolerance threshold of the NSCs, and the tissue source of the NSCs. The main mechanism of hypoxia-induced proliferation and differentiation involves an increase in cyclin and erythropoietin concentrations, and hypoxia-inducible factors play a key role. Multiple molecular pathways are activated during hypoxia, including Notch, Wnt/ß-catenin, PI3K/Akt, and altered microRNA expression. In addition, we review the protective effect of exogenous NSCs transplantation on ischemic or anoxic organs, the therapeutic potential of hypoxic preconditioning on exogenous NSCs and clinical application of NSCs.


Neural Stem Cells , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Cell Proliferation , Neural Stem Cells/metabolism , Cell Differentiation/physiology , Hypoxia/metabolism , Cell Hypoxia/physiology , Oxygen/pharmacology , Oxygen/metabolism , Cells, Cultured
11.
Ultrasound Med Biol ; 49(4): 982-988, 2023 04.
Article En | MEDLINE | ID: mdl-36581516

OBJECTIVE: Heart failure with reduced ejection fraction (HFrEF) is associated with structural and functional left ventricular changes. We compared intracardiac vortices between patients with HFrEF and normal participants using echocardiographic vector flow mapping, a novel intracardiac vortex analysis technology. METHODS: Transthoracic echocardiography was performed on 20 patients with HFrEF (age: 61 ± 15 y, 15 men) and 20 normal participants (age: 59 ± 12 y, 12 men) age- and sex-balanced at the cohort level. Systolic and diastolic energy loss, area (indexed by left ventricular end-diastolic diameter), circulation (reflects vortex strength) and relative positions of the largest vortex during systole (S-vortex), early (E-vortex) and late (A-vortex) diastole and maximal number of vortices in a single frame (MNV) were assessed. DISCUSSION: Patients with HFrEF had disproportionately sized vortices with smaller indexed vortex areas (p < 0.0001), and more fragmented vortices with higher MNV during both systole (p = 0.030) and diastole (p < 0.0001). These accompanied higher diastolic energy loss (p = 0.001). Additionally, the E-vortex (p = 0.002) and A-vortex (p < 0.0001) were more apically positioned, and the S-vortex was weaker (p = 0.033) in patients with HFrEF. More severe fragmentation (higher MNV) correlated with worse energy efficiency (higher energy loss). CONCLUSION: Patients with HFrEF had more fragmented intracardiac vortices and lower energy efficiency predominantly during diastole.


Heart Failure , Ventricular Dysfunction, Left , Male , Humans , Middle Aged , Aged , Prospective Studies , Stroke Volume , Blood Flow Velocity , Echocardiography , Diastole , Ventricular Function, Left
12.
Med Phys ; 50(1): 61-73, 2023 Jan.
Article En | MEDLINE | ID: mdl-35924929

BACKGROUND: While three-dimensional transesophageal echocardiography (3D TEE) has been increasingly used for assessing cardiac anatomy and function, it still suffers from a limited field of view (FoV) of the ultrasound transducer. Therefore, it is difficult to examine a complete region of interest without moving the transducer. Existing methods extend the FoV of 3D TEE images by mosaicing multiview static images, which requires synchronization between 3D TEE images and electrocardiogram (ECG) signal to avoid deformations in the images and can only get the widened image at a specific phase. PURPOSE: This work aims to develop a novel multiview nonrigid registration and fusion method to extend the FoV of 3D TEE images at different cardiac phases, avoiding the bias toward the specifically chosen phase. METHODS: A multiview nonrigid registration and fusion method is proposed to enlarge the FoV of 3D TEE images by fusing dynamic images captured from different viewpoints sequentially. The deformation field for registering images is defined by a collection of affine transformations organized in a graph structure and is estimated by a direct (intensity-based) method. The accuracy of the proposed method is evaluated by comparing it with two B-spline-based methods, two Demons-based methods, and one learning-based method VoxelMorph. Twenty-nine sequences of in vivo 3D TEE images captured from four patients are used for the comparative experiments. Four performance metrics including checkerboard volumes, signed distance, mean absolute distance (MAD), and Dice similarity coefficient (DSC) are used jointly to evaluate the accuracy of the results. Additionally, paired t-tests are performed to examine the significance of the results. RESULTS: The qualitative results show that the proposed method can align images more accurately and obtain the fused images with higher quality than the other five methods. Additionally, in the evaluation of the segmented left atrium (LA) walls for the pairwise registration and sequential fusion experiments, the proposed method achieves the MAD of (0.07 ± 0.03) mm for pairwise registration and (0.19 ± 0.02) mm for sequential fusion. Paired t-tests indicate that the results obtained from the proposed method are more accurate than those obtained by the state-of-the-art VoxelMorph and the diffeomorphic Demons methods at the significance level of 0.05. In the evaluation of left ventricle (LV) segmentations for the sequential fusion experiments, the proposed method achieves a DSC of (0.88 ± 0.08), which is also significantly better than diffeomorphic Demons at the 0.05 level. The FoVs of the final fused 3D TEE images obtained by our method are enlarged around two times compared with the original images. CONCLUSIONS: Without selecting the static (ECG-gated) images from the same cardiac phase, this work addressed the problem of limited FoV of 3D TEE images in the deformable scenario, obtaining the fused images with high accuracy and good quality. The proposed method could provide an alternative to the conventional fusion methods that are biased toward the specifically chosen phase.


Echocardiography, Three-Dimensional , Echocardiography, Transesophageal , Humans , Echocardiography, Transesophageal/methods , Echocardiography, Three-Dimensional/methods , Heart Atria/diagnostic imaging
14.
Food Res Int ; 160: 111741, 2022 10.
Article En | MEDLINE | ID: mdl-36076423

Apples (cv. Golden Delicious) were used as the materials to investigate methyl jasmonate (MeJA) dipping on quality parameters, organic acids metabolism and GABA shunt during storage at 21 ± 1 °C and 75 ± 5 % relative humidity. Results demonstrated that MeJA treatment reduced mass loss, respiratory intensity and ethylene release, and maintained higher flesh firmness and soluble solid content of apples. MeJA also decreased malic acid content, increased succinic and tartaric acids contents, and inhibited cytoplasmic aconitase (Cyt-ACO), NADP-malate (NADP-ME), phosphoenolpyruvate dehydrogenase (PEPC), mitochondrial citrate synthase (Mit-CS), glutamate dehydrogenase (GAD), and GABA transferase (GABA-T) activities in apples. NADP-isocitrate dehydrogenase (NADP-IDH), mitochondrial cis-aconitase (Mit-ACO), and cytoplasmic NAD-malate dehydrogenase (CytNAD-MDH) activities in apples were also enhanced by MeJA dipping. Moreover, MeJA dipping enhanced MdCytNAD-MDH and MdNADP-IDH expressions, and down-regulated MdGAD, MdGABA-T, MdNADP-ME, MdPEPC, MdCyt-ACO and MdMit-CS expressions in apples. These results suggest that MeJA dipping can maintain storage quality of "Golden Delicious" apples by regulating organic acids metabolism and GABA shunt.


Malus , Acetates , Aconitate Hydratase/metabolism , Cyclopentanes , Fruit/metabolism , Malus/metabolism , NADP/metabolism , Oxylipins , gamma-Aminobutyric Acid
16.
J Agric Food Chem ; 70(18): 5658-5667, 2022 May 11.
Article En | MEDLINE | ID: mdl-35499968

The efficacy of trehalose on the lesion diameter of apples (cv. Golden Delicious) inoculated with Penicillium expansum was evaluated to screen the optimal concentration. The changes in gene expression and activity of the enzyme in starch, sorbitol, and energy metabolism were also investigated in apples after trehalose treatment. The results revealed that trehalose dipping reduced the lesion diameter of apples inoculated with P. expansum. Trehalose suppressed the activities and gene expressions of ß-amylase, NAD-sorbitol dehydrogenase, and NADP-sorbitol dehydrogenase, whereas it decreased the sorbitol 6-phosphate dehydrogenase gene expression and amylose, amylopectin, total starch, and reducing sugar contents. Additionally, trehalose improved the gene expressions and activities of α-amylase, starch-branching enzymes, total amylase, H+-ATPase, and Ca2+-ATPase, as well as soluble sugar, adenosine triphosphate, and adenosine diphosphate contents and energy charge in apples. These findings imply that trehalose could induce tolerance to the blue mold of apple fruit by regulating starch, sorbitol, and energy metabolism.


Anacardiaceae , Malus , Penicillium , Energy Metabolism , Fruit/metabolism , L-Iditol 2-Dehydrogenase/metabolism , Malus/metabolism , Penicillium/metabolism , Sorbitol , Starch/metabolism , Sugars/metabolism , Trehalose/metabolism , Trehalose/pharmacology
17.
Front Cardiovasc Med ; 9: 864341, 2022.
Article En | MEDLINE | ID: mdl-35419432

Transcatheter edge-to-edge repair (TEER) therapy is recommended by the American College of Cardiology/American Heart Association (ACC/AHA) guidelines for selected patients with symptomatic severe or moderate-severe mitral regurgitation (MR). Echocardiography, in particular transesophageal echocardiography (TEE), plays a critical role in procedural planning and guidance for TEER. Recent innovations and advances in TEE techniques including three-dimensional (3D) imaging, unlimited x-plane imaging, live 3D multiplanar reconstruction, as well as transillumination imaging with color Doppler and transparency rendering have further enhanced procedural imaging for TEER, especially for complex diseases including commissural defects, clefts, and multi-segment pathologies. This review discusses the technology of these advanced procedural imaging techniques and provides a "step-by-step" guide on how to apply them during the TEER procedure with a focus on their added values in treatment of complex valve lesions.

18.
Genes (Basel) ; 13(3)2022 03 12.
Article En | MEDLINE | ID: mdl-35328056

Gamma-aminobutyric acid (GABA) has been reported to accumulate in plants when subjected to salt stress, and GABA-transaminase (GABA-T) is the main GABA-degrading enzyme in the GABA shunt pathway. So far, the salt tolerance mechanism of the GABA-T gene behind the GABA metabolism remains unclear. In this study, the cDNA (designated MuGABA-T) of GABA-T gene was cloned from mulberry, and our data showed that MuGABA-T protein shares some conserved characteristics with its homologs from several plant species. MuGABA-T gene was constitutively expressed at different levels in mulberry tissues, and was induced substantially by NaCl, ABA and SA. In addition, our results demonstrated that exogenous application of GABA significantly reduced the salt damage index and increased plant resistance to NaCl stress. We further performed a functional analysis of MuGABA-T gene and demonstrated that the content of GABA was reduced in the transgenic MuGABA-T Arabidopsis plants, which accumulated more ROS and exhibited more sensitivity to salt stress than wild-type plants. However, exogenous application of GABA significantly increased the activities of antioxidant enzymes and alleviated the active oxygen-related injury of the transgenic plants under NaCl stress. Moreover, the MuGABA-T gene was overexpressed in the mulberry hairy roots, and similar results were obtained for sensitivity to salt stress in the transgenic mulberry plants. Our results suggest that the MuGABA-T gene plays a pivotal role in GABA catabolism and is responsible for a decrease in salt tolerance, and it may be involved in the ROS pathway in the response to salt stress. Taken together, the information provided here is helpful for further analysis of the function of GABA-T genes, and may promote mulberry resistance breeding in the future.


Arabidopsis , Morus , Arabidopsis/genetics , Gene Expression Regulation, Plant , Morus/genetics , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Stress, Physiological/genetics , Transaminases/genetics , gamma-Aminobutyric Acid/genetics
19.
Plant Physiol Biochem ; 174: 43-50, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-35123260

Senescence is a pivotal factor that causes quality breakdown and economic loss of fruit after harvest. In this study, 'Golden Delicious' apples were used as the materials to investigate the effect of melatonin dipping on quality parameters and sucrose metabolism during room temperature storage. Postharvest melatonin treatment inhibited respiratory intensity and ethylene release, increased flesh firmness, soluble sugar, ascorbic acid, and soluble solid contents, and titratable acid in apples. Furthermore, melatonin treatment inhibited acid invertase and neutral invertase activities, increased sucrose synthase and sucrose phosphate synthase activities, and repressed the activities of sorbitol dehydrogenase, sorbitol oxidase and sucrose synthase cleavage in apple fruit. All these findings suggest that exogenous application of melatonin could maintain quality of 'Golden Delicious' apples by mediating the enzyme activity in sucrose metabolism.


Malus , Melatonin , Carbohydrate Metabolism , Fruit/metabolism , Malus/metabolism , Melatonin/metabolism , Melatonin/pharmacology , Sucrose/metabolism
20.
J Am Soc Echocardiogr ; 35(1): 124-133, 2022 01.
Article En | MEDLINE | ID: mdl-34508840

BACKGROUND: Procedural success of transcatheter left atrial appendage closure (LAAC) is dependent on correct device selection. Three-dimensional (3D) transesophageal echocardiography (TEE) is more accurate than the two-dimensional modality for evaluation of the complex anatomy of the left atrial appendage (LAA). However, 3D transesophageal echocardiographic analysis of the LAA is challenging and highly expertise dependent. The aim of this study was to evaluate the feasibility and accuracy of a novel software tool for automated 3D analysis of the LAA using 3D transesophageal echocardiographic data. METHODS: Intraprocedural 3D transesophageal echocardiographic data from 158 patients who underwent LAAC were retrospectively analyzed using a novel automated LAA analysis software tool. On the basis of the 3D transesophageal echocardiographic data, the software semiautomatically segmented the 3D LAA structure, determined the device landing zone, and generated measurements of the landing zone dimensions and LAA length, allowing manual editing if necessary. The accuracy of LAA preimplantation anatomic measurement reproducibility and time for analysis of the automated software were compared against expert manual 3D analysis. The software feasibility to predict the optimal device size was directly compared with implanted models. RESULTS: Automated 3D analysis of the LAA on 3D TEE was feasible in all patients. There was excellent agreement between automated and manual measurements of landing zone maximal diameter (bias, -0.32; limits of agreement, -3.56 to 2.92), area-derived mean diameter (bias, -0.24; limits of agreement, -3.12 to 2.64), and LAA depth (bias, 0.02; limits of agreement, -3.14 to 3.18). Automated 3D analysis, with manual editing if necessary, accurately identified the implanted device size in 90.5% of patients, outperforming two-dimensional TEE (68.9%; P < .01). The automated software showed results competitive against the manual analysis of 3D TEE, with higher intra- and interobserver reproducibility, and allowed quicker analysis (101.9 ± 9.3 vs 183.5 ± 42.7 sec, P < .001) compared with manual analysis. CONCLUSIONS: Automated LAA analysis on the basis of 3D TEE is feasible and allows accurate, reproducible, and rapid device sizing decision for LAAC.


Atrial Appendage , Atrial Fibrillation , Echocardiography, Three-Dimensional , Atrial Appendage/diagnostic imaging , Atrial Appendage/surgery , Echocardiography, Transesophageal , Feasibility Studies , Humans , Reproducibility of Results , Retrospective Studies
...